![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elrab | GIF version |
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 21-May-1999.) |
Ref | Expression |
---|---|
elrab.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elrab | ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2336 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2336 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | nfv 1539 | . 2 ⊢ Ⅎ𝑥𝜓 | |
4 | elrab.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 1, 2, 3, 4 | elrabf 2915 | 1 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 {crab 2476 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-v 2762 |
This theorem is referenced by: elrab3 2918 elrabd 2919 elrab2 2920 ralrab 2922 rexrab 2924 rabsnt 3694 unimax 3870 ssintub 3889 intminss 3896 exmidexmid 4226 exmidsssnc 4233 rabxfrd 4501 ordtri2or2exmidlem 4559 onsucelsucexmidlem1 4561 sefvex 5576 ssimaex 5619 acexmidlem2 5916 elpmg 6720 ssfilem 6933 diffitest 6945 inffiexmid 6964 supubti 7060 suplubti 7061 ctssexmid 7211 exmidonfinlem 7255 cc4f 7331 cc4n 7333 caucvgprlemladdfu 7739 caucvgprlemladdrl 7740 suplocexprlemmu 7780 suplocexprlemru 7781 suplocexprlemdisj 7782 suplocexprlemub 7785 nnindnn 7955 negf1o 8403 apsscn 8668 sup3exmid 8978 nnind 9000 peano2uz2 9427 peano5uzti 9428 dfuzi 9430 uzind 9431 uzind3 9433 eluz1 9599 uzind4 9656 supinfneg 9663 infsupneg 9664 eqreznegel 9682 elixx1 9966 elioo2 9990 elfz1 10082 expcl2lemap 10625 expclzaplem 10637 expclzap 10638 expap0i 10645 expge0 10649 expge1 10650 hashennnuni 10853 wrdmap 10948 shftf 10977 reccn2ap 11459 dvdsdivcl 11995 divalgmod 12071 zsupcl 12087 infssuzex 12089 infssuzcldc 12091 bezoutlemsup 12149 dfgcd2 12154 uzwodc 12177 nnwosdc 12179 nninfctlemfo 12180 lcmgcdlem 12218 1nprm 12255 1idssfct 12256 isprm2 12258 phicl2 12355 hashdvds 12362 phisum 12381 odzval 12382 odzcllem 12383 odzdvds 12386 oddennn 12552 evenennn 12553 znnen 12558 ennnfonelemg 12563 ennnfonelemom 12568 ismhm 13036 issubm 13047 issubmd 13049 grplinv 13125 issubg 13246 isnsg 13275 isrim0 13660 issubrng 13698 issubrg 13720 islssm 13856 islssmg 13857 cnfldui 14088 istopon 14192 epttop 14269 iscld 14282 isnei 14323 neipsm 14333 iscn 14376 iscnp 14378 txdis1cn 14457 ishmeo 14483 ispsmet 14502 ismet 14523 isxmet 14524 elblps 14569 elbl 14570 xmetxpbl 14687 reopnap 14725 divcnap 14744 elcncf 14752 cdivcncfap 14783 cnopnap 14790 divcncfap 14793 maxcncf 14794 mincncf 14795 ellimc3apf 14839 limccoap 14857 dvlemap 14859 dvidlemap 14870 dvidrelem 14871 dvidsslem 14872 dvcnp2cntop 14878 dvaddxxbr 14880 dvmulxxbr 14881 dvcoapbr 14886 dvcjbr 14887 dvrecap 14892 dveflem 14905 lgsfle1 15166 lgsle1 15172 lgsdirprm 15191 lgsne0 15195 lgsquadlem1 15234 lgsquadlem2 15235 subctctexmid 15561 |
Copyright terms: Public domain | W3C validator |