Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elrab | GIF version |
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 21-May-1999.) |
Ref | Expression |
---|---|
elrab.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elrab | ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2296 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2296 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | nfv 1505 | . 2 ⊢ Ⅎ𝑥𝜓 | |
4 | elrab.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 1, 2, 3, 4 | elrabf 2862 | 1 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1332 ∈ wcel 2125 {crab 2436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-rab 2441 df-v 2711 |
This theorem is referenced by: elrab3 2865 elrabd 2866 elrab2 2867 ralrab 2869 rexrab 2871 rabsnt 3630 unimax 3802 ssintub 3821 intminss 3828 exmidexmid 4152 exmidsssnc 4159 rabxfrd 4423 ordtri2or2exmidlem 4479 onsucelsucexmidlem1 4481 sefvex 5482 ssimaex 5522 acexmidlem2 5811 elpmg 6598 ssfilem 6809 diffitest 6821 inffiexmid 6840 supubti 6931 suplubti 6932 ctssexmid 7072 exmidonfinlem 7107 cc4f 7168 cc4n 7170 caucvgprlemladdfu 7576 caucvgprlemladdrl 7577 suplocexprlemmu 7617 suplocexprlemru 7618 suplocexprlemdisj 7619 suplocexprlemub 7622 nnindnn 7792 negf1o 8236 apsscn 8501 sup3exmid 8807 nnind 8828 peano2uz2 9250 peano5uzti 9251 dfuzi 9253 uzind 9254 uzind3 9256 eluz1 9422 uzind4 9478 supinfneg 9485 infsupneg 9486 eqreznegel 9501 elixx1 9779 elioo2 9803 elfz1 9895 expcl2lemap 10409 expclzaplem 10421 expclzap 10422 expap0i 10429 expge0 10433 expge1 10434 hashennnuni 10630 shftf 10707 reccn2ap 11187 dvdsdivcl 11715 divalgmod 11791 zsupcl 11807 infssuzex 11809 infssuzcldc 11811 bezoutlemsup 11864 dfgcd2 11869 lcmcllem 11915 lcmledvds 11918 lcmgcdlem 11925 1nprm 11962 1idssfct 11963 isprm2 11965 phicl2 12057 hashdvds 12064 oddennn 12072 evenennn 12073 znnen 12078 ennnfonelemg 12083 ennnfonelemom 12088 istopon 12350 epttop 12429 iscld 12442 isnei 12483 neipsm 12493 iscn 12536 iscnp 12538 txdis1cn 12617 ishmeo 12643 ispsmet 12662 ismet 12683 isxmet 12684 elblps 12729 elbl 12730 xmetxpbl 12847 reopnap 12877 divcnap 12894 elcncf 12899 cdivcncfap 12926 cnopnap 12933 ellimc3apf 12968 limccoap 12986 dvlemap 12988 dvidlemap 12999 dvcnp2cntop 13002 dvaddxxbr 13004 dvmulxxbr 13005 dvcoapbr 13010 dvcjbr 13011 dvrecap 13016 dveflem 13026 subctctexmid 13512 |
Copyright terms: Public domain | W3C validator |