![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elrab | GIF version |
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 21-May-1999.) |
Ref | Expression |
---|---|
elrab.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elrab | ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2228 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2228 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | nfv 1466 | . 2 ⊢ Ⅎ𝑥𝜓 | |
4 | elrab.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 1, 2, 3, 4 | elrabf 2769 | 1 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1289 ∈ wcel 1438 {crab 2363 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-rab 2368 df-v 2621 |
This theorem is referenced by: elrab3 2772 elrabd 2773 elrab2 2774 ralrab 2776 rexrab 2778 rabsnt 3517 unimax 3687 ssintub 3706 intminss 3713 exmidexmid 4031 rabxfrd 4291 ordtri2or2exmidlem 4342 onsucelsucexmidlem1 4344 sefvex 5326 ssimaex 5365 acexmidlem2 5649 elpmg 6421 ssfilem 6591 diffitest 6603 inffiexmid 6622 supubti 6694 suplubti 6695 caucvgprlemladdfu 7236 caucvgprlemladdrl 7237 nnindnn 7428 negf1o 7860 nnind 8438 peano2uz2 8853 peano5uzti 8854 dfuzi 8856 uzind 8857 uzind3 8859 eluz1 9023 uzind4 9076 supinfneg 9083 infsupneg 9084 eqreznegel 9099 elixx1 9315 elioo2 9339 elfz1 9429 expcl2lemap 9967 expclzaplem 9979 expclzap 9980 expap0i 9987 expge0 9991 expge1 9992 hashennnuni 10187 shftf 10264 dvdsdivcl 11129 divalgmod 11205 zsupcl 11221 infssuzex 11223 infssuzcldc 11225 bezoutlemsup 11276 dfgcd2 11281 lcmcllem 11327 lcmledvds 11330 lcmgcdlem 11337 1nprm 11374 1idssfct 11375 isprm2 11377 phicl2 11468 hashdvds 11475 oddennn 11483 evenennn 11484 znnen 11489 istopon 11610 elcncf 11629 |
Copyright terms: Public domain | W3C validator |