Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elrab | GIF version |
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 21-May-1999.) |
Ref | Expression |
---|---|
elrab.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elrab | ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2312 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2312 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | nfv 1521 | . 2 ⊢ Ⅎ𝑥𝜓 | |
4 | elrab.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 1, 2, 3, 4 | elrabf 2884 | 1 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 {crab 2452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rab 2457 df-v 2732 |
This theorem is referenced by: elrab3 2887 elrabd 2888 elrab2 2889 ralrab 2891 rexrab 2893 rabsnt 3658 unimax 3830 ssintub 3849 intminss 3856 exmidexmid 4182 exmidsssnc 4189 rabxfrd 4454 ordtri2or2exmidlem 4510 onsucelsucexmidlem1 4512 sefvex 5517 ssimaex 5557 acexmidlem2 5850 elpmg 6642 ssfilem 6853 diffitest 6865 inffiexmid 6884 supubti 6976 suplubti 6977 ctssexmid 7126 exmidonfinlem 7170 cc4f 7231 cc4n 7233 caucvgprlemladdfu 7639 caucvgprlemladdrl 7640 suplocexprlemmu 7680 suplocexprlemru 7681 suplocexprlemdisj 7682 suplocexprlemub 7685 nnindnn 7855 negf1o 8301 apsscn 8566 sup3exmid 8873 nnind 8894 peano2uz2 9319 peano5uzti 9320 dfuzi 9322 uzind 9323 uzind3 9325 eluz1 9491 uzind4 9547 supinfneg 9554 infsupneg 9555 eqreznegel 9573 elixx1 9854 elioo2 9878 elfz1 9970 expcl2lemap 10488 expclzaplem 10500 expclzap 10501 expap0i 10508 expge0 10512 expge1 10513 hashennnuni 10713 shftf 10794 reccn2ap 11276 dvdsdivcl 11810 divalgmod 11886 zsupcl 11902 infssuzex 11904 infssuzcldc 11906 bezoutlemsup 11964 dfgcd2 11969 uzwodc 11992 nnwosdc 11994 lcmcllem 12021 lcmledvds 12024 lcmgcdlem 12031 1nprm 12068 1idssfct 12069 isprm2 12071 phicl2 12168 hashdvds 12175 phisum 12194 odzval 12195 odzcllem 12196 odzdvds 12199 oddennn 12347 evenennn 12348 znnen 12353 ennnfonelemg 12358 ennnfonelemom 12363 ismhm 12685 issubm 12695 issubmd 12696 grplinv 12752 istopon 12805 epttop 12884 iscld 12897 isnei 12938 neipsm 12948 iscn 12991 iscnp 12993 txdis1cn 13072 ishmeo 13098 ispsmet 13117 ismet 13138 isxmet 13139 elblps 13184 elbl 13185 xmetxpbl 13302 reopnap 13332 divcnap 13349 elcncf 13354 cdivcncfap 13381 cnopnap 13388 ellimc3apf 13423 limccoap 13441 dvlemap 13443 dvidlemap 13454 dvcnp2cntop 13457 dvaddxxbr 13459 dvmulxxbr 13460 dvcoapbr 13465 dvcjbr 13466 dvrecap 13471 dveflem 13481 lgsfle1 13704 lgsle1 13710 lgsdirprm 13729 lgsne0 13733 subctctexmid 14034 |
Copyright terms: Public domain | W3C validator |