![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elrab | GIF version |
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 21-May-1999.) |
Ref | Expression |
---|---|
elrab.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elrab | ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2336 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2336 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | nfv 1539 | . 2 ⊢ Ⅎ𝑥𝜓 | |
4 | elrab.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 1, 2, 3, 4 | elrabf 2914 | 1 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 {crab 2476 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-v 2762 |
This theorem is referenced by: elrab3 2917 elrabd 2918 elrab2 2919 ralrab 2921 rexrab 2923 rabsnt 3693 unimax 3869 ssintub 3888 intminss 3895 exmidexmid 4225 exmidsssnc 4232 rabxfrd 4500 ordtri2or2exmidlem 4558 onsucelsucexmidlem1 4560 sefvex 5575 ssimaex 5618 acexmidlem2 5915 elpmg 6718 ssfilem 6931 diffitest 6943 inffiexmid 6962 supubti 7058 suplubti 7059 ctssexmid 7209 exmidonfinlem 7253 cc4f 7329 cc4n 7331 caucvgprlemladdfu 7737 caucvgprlemladdrl 7738 suplocexprlemmu 7778 suplocexprlemru 7779 suplocexprlemdisj 7780 suplocexprlemub 7783 nnindnn 7953 negf1o 8401 apsscn 8666 sup3exmid 8976 nnind 8998 peano2uz2 9424 peano5uzti 9425 dfuzi 9427 uzind 9428 uzind3 9430 eluz1 9596 uzind4 9653 supinfneg 9660 infsupneg 9661 eqreznegel 9679 elixx1 9963 elioo2 9987 elfz1 10079 expcl2lemap 10622 expclzaplem 10634 expclzap 10635 expap0i 10642 expge0 10646 expge1 10647 hashennnuni 10850 wrdmap 10945 shftf 10974 reccn2ap 11456 dvdsdivcl 11992 divalgmod 12068 zsupcl 12084 infssuzex 12086 infssuzcldc 12088 bezoutlemsup 12146 dfgcd2 12151 uzwodc 12174 nnwosdc 12176 nninfctlemfo 12177 lcmgcdlem 12215 1nprm 12252 1idssfct 12253 isprm2 12255 phicl2 12352 hashdvds 12359 phisum 12378 odzval 12379 odzcllem 12380 odzdvds 12383 oddennn 12549 evenennn 12550 znnen 12555 ennnfonelemg 12560 ennnfonelemom 12565 ismhm 13033 issubm 13044 issubmd 13046 grplinv 13122 issubg 13243 isnsg 13272 isrim0 13657 issubrng 13695 issubrg 13717 islssm 13853 islssmg 13854 cnfldui 14077 istopon 14181 epttop 14258 iscld 14271 isnei 14312 neipsm 14322 iscn 14365 iscnp 14367 txdis1cn 14446 ishmeo 14472 ispsmet 14491 ismet 14512 isxmet 14513 elblps 14558 elbl 14559 xmetxpbl 14676 reopnap 14706 divcnap 14723 elcncf 14728 cdivcncfap 14758 cnopnap 14765 divcncfap 14768 maxcncf 14769 mincncf 14770 ellimc3apf 14814 limccoap 14832 dvlemap 14834 dvidlemap 14845 dvcnp2cntop 14848 dvaddxxbr 14850 dvmulxxbr 14851 dvcoapbr 14856 dvcjbr 14857 dvrecap 14862 dveflem 14872 lgsfle1 15125 lgsle1 15131 lgsdirprm 15150 lgsne0 15154 lgsquadlem1 15191 subctctexmid 15491 |
Copyright terms: Public domain | W3C validator |