Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elrab | GIF version |
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 21-May-1999.) |
Ref | Expression |
---|---|
elrab.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elrab | ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2307 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2307 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | nfv 1516 | . 2 ⊢ Ⅎ𝑥𝜓 | |
4 | elrab.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 1, 2, 3, 4 | elrabf 2879 | 1 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 {crab 2447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-rab 2452 df-v 2727 |
This theorem is referenced by: elrab3 2882 elrabd 2883 elrab2 2884 ralrab 2886 rexrab 2888 rabsnt 3650 unimax 3822 ssintub 3841 intminss 3848 exmidexmid 4174 exmidsssnc 4181 rabxfrd 4446 ordtri2or2exmidlem 4502 onsucelsucexmidlem1 4504 sefvex 5506 ssimaex 5546 acexmidlem2 5838 elpmg 6626 ssfilem 6837 diffitest 6849 inffiexmid 6868 supubti 6960 suplubti 6961 ctssexmid 7110 exmidonfinlem 7145 cc4f 7206 cc4n 7208 caucvgprlemladdfu 7614 caucvgprlemladdrl 7615 suplocexprlemmu 7655 suplocexprlemru 7656 suplocexprlemdisj 7657 suplocexprlemub 7660 nnindnn 7830 negf1o 8276 apsscn 8541 sup3exmid 8848 nnind 8869 peano2uz2 9294 peano5uzti 9295 dfuzi 9297 uzind 9298 uzind3 9300 eluz1 9466 uzind4 9522 supinfneg 9529 infsupneg 9530 eqreznegel 9548 elixx1 9829 elioo2 9853 elfz1 9945 expcl2lemap 10463 expclzaplem 10475 expclzap 10476 expap0i 10483 expge0 10487 expge1 10488 hashennnuni 10688 shftf 10768 reccn2ap 11250 dvdsdivcl 11784 divalgmod 11860 zsupcl 11876 infssuzex 11878 infssuzcldc 11880 bezoutlemsup 11938 dfgcd2 11943 uzwodc 11966 nnwosdc 11968 lcmcllem 11995 lcmledvds 11998 lcmgcdlem 12005 1nprm 12042 1idssfct 12043 isprm2 12045 phicl2 12142 hashdvds 12149 phisum 12168 odzval 12169 odzcllem 12170 odzdvds 12173 oddennn 12321 evenennn 12322 znnen 12327 ennnfonelemg 12332 ennnfonelemom 12337 istopon 12611 epttop 12690 iscld 12703 isnei 12744 neipsm 12754 iscn 12797 iscnp 12799 txdis1cn 12878 ishmeo 12904 ispsmet 12923 ismet 12944 isxmet 12945 elblps 12990 elbl 12991 xmetxpbl 13108 reopnap 13138 divcnap 13155 elcncf 13160 cdivcncfap 13187 cnopnap 13194 ellimc3apf 13229 limccoap 13247 dvlemap 13249 dvidlemap 13260 dvcnp2cntop 13263 dvaddxxbr 13265 dvmulxxbr 13266 dvcoapbr 13271 dvcjbr 13272 dvrecap 13277 dveflem 13287 lgsfle1 13510 lgsle1 13516 lgsdirprm 13535 lgsne0 13539 subctctexmid 13841 |
Copyright terms: Public domain | W3C validator |