![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elrab | GIF version |
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 21-May-1999.) |
Ref | Expression |
---|---|
elrab.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elrab | ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2319 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2319 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | nfv 1528 | . 2 ⊢ Ⅎ𝑥𝜓 | |
4 | elrab.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 1, 2, 3, 4 | elrabf 2891 | 1 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 {crab 2459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rab 2464 df-v 2739 |
This theorem is referenced by: elrab3 2894 elrabd 2895 elrab2 2896 ralrab 2898 rexrab 2900 rabsnt 3667 unimax 3843 ssintub 3862 intminss 3869 exmidexmid 4196 exmidsssnc 4203 rabxfrd 4469 ordtri2or2exmidlem 4525 onsucelsucexmidlem1 4527 sefvex 5536 ssimaex 5577 acexmidlem2 5871 elpmg 6663 ssfilem 6874 diffitest 6886 inffiexmid 6905 supubti 6997 suplubti 6998 ctssexmid 7147 exmidonfinlem 7191 cc4f 7267 cc4n 7269 caucvgprlemladdfu 7675 caucvgprlemladdrl 7676 suplocexprlemmu 7716 suplocexprlemru 7717 suplocexprlemdisj 7718 suplocexprlemub 7721 nnindnn 7891 negf1o 8338 apsscn 8603 sup3exmid 8913 nnind 8934 peano2uz2 9359 peano5uzti 9360 dfuzi 9362 uzind 9363 uzind3 9365 eluz1 9531 uzind4 9587 supinfneg 9594 infsupneg 9595 eqreznegel 9613 elixx1 9896 elioo2 9920 elfz1 10012 expcl2lemap 10531 expclzaplem 10543 expclzap 10544 expap0i 10551 expge0 10555 expge1 10556 hashennnuni 10758 shftf 10838 reccn2ap 11320 dvdsdivcl 11855 divalgmod 11931 zsupcl 11947 infssuzex 11949 infssuzcldc 11951 bezoutlemsup 12009 dfgcd2 12014 uzwodc 12037 nnwosdc 12039 lcmcllem 12066 lcmledvds 12069 lcmgcdlem 12076 1nprm 12113 1idssfct 12114 isprm2 12116 phicl2 12213 hashdvds 12220 phisum 12239 odzval 12240 odzcllem 12241 odzdvds 12244 oddennn 12392 evenennn 12393 znnen 12398 ennnfonelemg 12403 ennnfonelemom 12408 ismhm 12852 issubm 12862 issubmd 12864 grplinv 12921 issubg 13031 isnsg 13060 issubrg 13340 istopon 13483 epttop 13560 iscld 13573 isnei 13614 neipsm 13624 iscn 13667 iscnp 13669 txdis1cn 13748 ishmeo 13774 ispsmet 13793 ismet 13814 isxmet 13815 elblps 13860 elbl 13861 xmetxpbl 13978 reopnap 14008 divcnap 14025 elcncf 14030 cdivcncfap 14057 cnopnap 14064 ellimc3apf 14099 limccoap 14117 dvlemap 14119 dvidlemap 14130 dvcnp2cntop 14133 dvaddxxbr 14135 dvmulxxbr 14136 dvcoapbr 14141 dvcjbr 14142 dvrecap 14147 dveflem 14157 lgsfle1 14380 lgsle1 14386 lgsdirprm 14405 lgsne0 14409 subctctexmid 14720 |
Copyright terms: Public domain | W3C validator |