| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cardonle | GIF version | ||
| Description: The cardinal of an ordinal number is less than or equal to the ordinal number. Proposition 10.6(3) of [TakeutiZaring] p. 85. (Contributed by NM, 22-Oct-2003.) |
| Ref | Expression |
|---|---|
| cardonle | ⊢ (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oncardval 7292 | . 2 ⊢ (𝐴 ∈ On → (card‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴}) | |
| 2 | enrefg 6854 | . . 3 ⊢ (𝐴 ∈ On → 𝐴 ≈ 𝐴) | |
| 3 | breq1 4046 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ≈ 𝐴 ↔ 𝐴 ≈ 𝐴)) | |
| 4 | 3 | intminss 3909 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐴) → ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴} ⊆ 𝐴) |
| 5 | 2, 4 | mpdan 421 | . 2 ⊢ (𝐴 ∈ On → ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴} ⊆ 𝐴) |
| 6 | 1, 5 | eqsstrd 3228 | 1 ⊢ (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 {crab 2487 ⊆ wss 3165 ∩ cint 3884 class class class wbr 4043 Oncon0 4409 ‘cfv 5270 ≈ cen 6824 cardccrd 7283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-en 6827 df-card 7285 |
| This theorem is referenced by: card0 7294 |
| Copyright terms: Public domain | W3C validator |