ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cardonle GIF version

Theorem cardonle 7320
Description: The cardinal of an ordinal number is less than or equal to the ordinal number. Proposition 10.6(3) of [TakeutiZaring] p. 85. (Contributed by NM, 22-Oct-2003.)
Assertion
Ref Expression
cardonle (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴)

Proof of Theorem cardonle
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oncardval 7319 . 2 (𝐴 ∈ On → (card‘𝐴) = {𝑥 ∈ On ∣ 𝑥𝐴})
2 enrefg 6878 . . 3 (𝐴 ∈ On → 𝐴𝐴)
3 breq1 4062 . . . 4 (𝑥 = 𝐴 → (𝑥𝐴𝐴𝐴))
43intminss 3924 . . 3 ((𝐴 ∈ On ∧ 𝐴𝐴) → {𝑥 ∈ On ∣ 𝑥𝐴} ⊆ 𝐴)
52, 4mpdan 421 . 2 (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝑥𝐴} ⊆ 𝐴)
61, 5eqsstrd 3237 1 (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2178  {crab 2490  wss 3174   cint 3899   class class class wbr 4059  Oncon0 4428  cfv 5290  cen 6848  cardccrd 7310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-en 6851  df-card 7312
This theorem is referenced by:  card0  7321
  Copyright terms: Public domain W3C validator