ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemdisj GIF version

Theorem ivthinclemdisj 15187
Description: Lemma for ivthinc 15190. The lower and upper cuts are disjoint. (Contributed by Jim Kingdon, 18-Feb-2024.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
ivthinc.i (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
ivthinclem.l 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
ivthinclem.r 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
Assertion
Ref Expression
ivthinclemdisj (𝜑 → (𝐿𝑅) = ∅)
Distinct variable groups:   𝑤,𝐴   𝑥,𝐴   𝑤,𝐵   𝑥,𝐵   𝑤,𝐹   𝑥,𝐹   𝑤,𝑈   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑤)   𝐴(𝑦)   𝐵(𝑦)   𝐷(𝑥,𝑦,𝑤)   𝑅(𝑥,𝑦,𝑤)   𝑈(𝑥,𝑦)   𝐹(𝑦)   𝐿(𝑥,𝑦,𝑤)

Proof of Theorem ivthinclemdisj
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fveq2 5589 . . . . . . . 8 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
21eleq1d 2275 . . . . . . 7 (𝑥 = 𝑧 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑧) ∈ ℝ))
3 ivth.8 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
43ralrimiva 2580 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
54adantr 276 . . . . . . 7 ((𝜑𝑧𝐿) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
6 fveq2 5589 . . . . . . . . . . . 12 (𝑤 = 𝑧 → (𝐹𝑤) = (𝐹𝑧))
76breq1d 4061 . . . . . . . . . . 11 (𝑤 = 𝑧 → ((𝐹𝑤) < 𝑈 ↔ (𝐹𝑧) < 𝑈))
8 ivthinclem.l . . . . . . . . . . 11 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
97, 8elrab2 2936 . . . . . . . . . 10 (𝑧𝐿 ↔ (𝑧 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑧) < 𝑈))
109biimpi 120 . . . . . . . . 9 (𝑧𝐿 → (𝑧 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑧) < 𝑈))
1110adantl 277 . . . . . . . 8 ((𝜑𝑧𝐿) → (𝑧 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑧) < 𝑈))
1211simpld 112 . . . . . . 7 ((𝜑𝑧𝐿) → 𝑧 ∈ (𝐴[,]𝐵))
132, 5, 12rspcdva 2886 . . . . . 6 ((𝜑𝑧𝐿) → (𝐹𝑧) ∈ ℝ)
14 ivth.3 . . . . . . 7 (𝜑𝑈 ∈ ℝ)
1514adantr 276 . . . . . 6 ((𝜑𝑧𝐿) → 𝑈 ∈ ℝ)
1611simprd 114 . . . . . 6 ((𝜑𝑧𝐿) → (𝐹𝑧) < 𝑈)
1713, 15, 16ltnsymd 8212 . . . . 5 ((𝜑𝑧𝐿) → ¬ 𝑈 < (𝐹𝑧))
1817intnand 933 . . . 4 ((𝜑𝑧𝐿) → ¬ (𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑈 < (𝐹𝑧)))
196breq2d 4063 . . . . 5 (𝑤 = 𝑧 → (𝑈 < (𝐹𝑤) ↔ 𝑈 < (𝐹𝑧)))
20 ivthinclem.r . . . . 5 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
2119, 20elrab2 2936 . . . 4 (𝑧𝑅 ↔ (𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑈 < (𝐹𝑧)))
2218, 21sylnibr 679 . . 3 ((𝜑𝑧𝐿) → ¬ 𝑧𝑅)
2322ralrimiva 2580 . 2 (𝜑 → ∀𝑧𝐿 ¬ 𝑧𝑅)
24 disj 3513 . 2 ((𝐿𝑅) = ∅ ↔ ∀𝑧𝐿 ¬ 𝑧𝑅)
2523, 24sylibr 134 1 (𝜑 → (𝐿𝑅) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1373  wcel 2177  wral 2485  {crab 2489  cin 3169  wss 3170  c0 3464   class class class wbr 4051  cfv 5280  (class class class)co 5957  cc 7943  cr 7944   < clt 8127  [,]cicc 10033  cnccncf 15117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-pre-ltirr 8057  ax-pre-lttrn 8059
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-xp 4689  df-cnv 4691  df-iota 5241  df-fv 5288  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133
This theorem is referenced by:  ivthinclemex  15189
  Copyright terms: Public domain W3C validator