![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ivthinclemdisj | GIF version |
Description: Lemma for ivthinc 14822. The lower and upper cuts are disjoint. (Contributed by Jim Kingdon, 18-Feb-2024.) |
Ref | Expression |
---|---|
ivth.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ivth.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ivth.3 | ⊢ (𝜑 → 𝑈 ∈ ℝ) |
ivth.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
ivth.5 | ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) |
ivth.7 | ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) |
ivth.8 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
ivth.9 | ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) |
ivthinc.i | ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) |
ivthinclem.l | ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} |
ivthinclem.r | ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} |
Ref | Expression |
---|---|
ivthinclemdisj | ⊢ (𝜑 → (𝐿 ∩ 𝑅) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 5555 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) | |
2 | 1 | eleq1d 2262 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘𝑧) ∈ ℝ)) |
3 | ivth.8 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) | |
4 | 3 | ralrimiva 2567 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹‘𝑥) ∈ ℝ) |
5 | 4 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐿) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹‘𝑥) ∈ ℝ) |
6 | fveq2 5555 | . . . . . . . . . . . 12 ⊢ (𝑤 = 𝑧 → (𝐹‘𝑤) = (𝐹‘𝑧)) | |
7 | 6 | breq1d 4040 | . . . . . . . . . . 11 ⊢ (𝑤 = 𝑧 → ((𝐹‘𝑤) < 𝑈 ↔ (𝐹‘𝑧) < 𝑈)) |
8 | ivthinclem.l | . . . . . . . . . . 11 ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} | |
9 | 7, 8 | elrab2 2920 | . . . . . . . . . 10 ⊢ (𝑧 ∈ 𝐿 ↔ (𝑧 ∈ (𝐴[,]𝐵) ∧ (𝐹‘𝑧) < 𝑈)) |
10 | 9 | biimpi 120 | . . . . . . . . 9 ⊢ (𝑧 ∈ 𝐿 → (𝑧 ∈ (𝐴[,]𝐵) ∧ (𝐹‘𝑧) < 𝑈)) |
11 | 10 | adantl 277 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐿) → (𝑧 ∈ (𝐴[,]𝐵) ∧ (𝐹‘𝑧) < 𝑈)) |
12 | 11 | simpld 112 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐿) → 𝑧 ∈ (𝐴[,]𝐵)) |
13 | 2, 5, 12 | rspcdva 2870 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐿) → (𝐹‘𝑧) ∈ ℝ) |
14 | ivth.3 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ ℝ) | |
15 | 14 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐿) → 𝑈 ∈ ℝ) |
16 | 11 | simprd 114 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐿) → (𝐹‘𝑧) < 𝑈) |
17 | 13, 15, 16 | ltnsymd 8141 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐿) → ¬ 𝑈 < (𝐹‘𝑧)) |
18 | 17 | intnand 932 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐿) → ¬ (𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑈 < (𝐹‘𝑧))) |
19 | 6 | breq2d 4042 | . . . . 5 ⊢ (𝑤 = 𝑧 → (𝑈 < (𝐹‘𝑤) ↔ 𝑈 < (𝐹‘𝑧))) |
20 | ivthinclem.r | . . . . 5 ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} | |
21 | 19, 20 | elrab2 2920 | . . . 4 ⊢ (𝑧 ∈ 𝑅 ↔ (𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑈 < (𝐹‘𝑧))) |
22 | 18, 21 | sylnibr 678 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐿) → ¬ 𝑧 ∈ 𝑅) |
23 | 22 | ralrimiva 2567 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ 𝐿 ¬ 𝑧 ∈ 𝑅) |
24 | disj 3496 | . 2 ⊢ ((𝐿 ∩ 𝑅) = ∅ ↔ ∀𝑧 ∈ 𝐿 ¬ 𝑧 ∈ 𝑅) | |
25 | 23, 24 | sylibr 134 | 1 ⊢ (𝜑 → (𝐿 ∩ 𝑅) = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∀wral 2472 {crab 2476 ∩ cin 3153 ⊆ wss 3154 ∅c0 3447 class class class wbr 4030 ‘cfv 5255 (class class class)co 5919 ℂcc 7872 ℝcr 7873 < clt 8056 [,]cicc 9960 –cn→ccncf 14749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-pre-ltirr 7986 ax-pre-lttrn 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-xp 4666 df-cnv 4668 df-iota 5216 df-fv 5263 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 |
This theorem is referenced by: ivthinclemex 14821 |
Copyright terms: Public domain | W3C validator |