| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ivthinclemdisj | GIF version | ||
| Description: Lemma for ivthinc 14879. The lower and upper cuts are disjoint. (Contributed by Jim Kingdon, 18-Feb-2024.) |
| Ref | Expression |
|---|---|
| ivth.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ivth.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ivth.3 | ⊢ (𝜑 → 𝑈 ∈ ℝ) |
| ivth.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| ivth.5 | ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) |
| ivth.7 | ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) |
| ivth.8 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
| ivth.9 | ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) |
| ivthinc.i | ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) |
| ivthinclem.l | ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} |
| ivthinclem.r | ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} |
| Ref | Expression |
|---|---|
| ivthinclemdisj | ⊢ (𝜑 → (𝐿 ∩ 𝑅) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5558 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) | |
| 2 | 1 | eleq1d 2265 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘𝑧) ∈ ℝ)) |
| 3 | ivth.8 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) | |
| 4 | 3 | ralrimiva 2570 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹‘𝑥) ∈ ℝ) |
| 5 | 4 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐿) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹‘𝑥) ∈ ℝ) |
| 6 | fveq2 5558 | . . . . . . . . . . . 12 ⊢ (𝑤 = 𝑧 → (𝐹‘𝑤) = (𝐹‘𝑧)) | |
| 7 | 6 | breq1d 4043 | . . . . . . . . . . 11 ⊢ (𝑤 = 𝑧 → ((𝐹‘𝑤) < 𝑈 ↔ (𝐹‘𝑧) < 𝑈)) |
| 8 | ivthinclem.l | . . . . . . . . . . 11 ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} | |
| 9 | 7, 8 | elrab2 2923 | . . . . . . . . . 10 ⊢ (𝑧 ∈ 𝐿 ↔ (𝑧 ∈ (𝐴[,]𝐵) ∧ (𝐹‘𝑧) < 𝑈)) |
| 10 | 9 | biimpi 120 | . . . . . . . . 9 ⊢ (𝑧 ∈ 𝐿 → (𝑧 ∈ (𝐴[,]𝐵) ∧ (𝐹‘𝑧) < 𝑈)) |
| 11 | 10 | adantl 277 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐿) → (𝑧 ∈ (𝐴[,]𝐵) ∧ (𝐹‘𝑧) < 𝑈)) |
| 12 | 11 | simpld 112 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐿) → 𝑧 ∈ (𝐴[,]𝐵)) |
| 13 | 2, 5, 12 | rspcdva 2873 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐿) → (𝐹‘𝑧) ∈ ℝ) |
| 14 | ivth.3 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ ℝ) | |
| 15 | 14 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐿) → 𝑈 ∈ ℝ) |
| 16 | 11 | simprd 114 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐿) → (𝐹‘𝑧) < 𝑈) |
| 17 | 13, 15, 16 | ltnsymd 8146 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐿) → ¬ 𝑈 < (𝐹‘𝑧)) |
| 18 | 17 | intnand 932 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐿) → ¬ (𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑈 < (𝐹‘𝑧))) |
| 19 | 6 | breq2d 4045 | . . . . 5 ⊢ (𝑤 = 𝑧 → (𝑈 < (𝐹‘𝑤) ↔ 𝑈 < (𝐹‘𝑧))) |
| 20 | ivthinclem.r | . . . . 5 ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} | |
| 21 | 19, 20 | elrab2 2923 | . . . 4 ⊢ (𝑧 ∈ 𝑅 ↔ (𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑈 < (𝐹‘𝑧))) |
| 22 | 18, 21 | sylnibr 678 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐿) → ¬ 𝑧 ∈ 𝑅) |
| 23 | 22 | ralrimiva 2570 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ 𝐿 ¬ 𝑧 ∈ 𝑅) |
| 24 | disj 3499 | . 2 ⊢ ((𝐿 ∩ 𝑅) = ∅ ↔ ∀𝑧 ∈ 𝐿 ¬ 𝑧 ∈ 𝑅) | |
| 25 | 23, 24 | sylibr 134 | 1 ⊢ (𝜑 → (𝐿 ∩ 𝑅) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∀wral 2475 {crab 2479 ∩ cin 3156 ⊆ wss 3157 ∅c0 3450 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 ℂcc 7877 ℝcr 7878 < clt 8061 [,]cicc 9966 –cn→ccncf 14806 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-ltirr 7991 ax-pre-lttrn 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-iota 5219 df-fv 5266 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 |
| This theorem is referenced by: ivthinclemex 14878 |
| Copyright terms: Public domain | W3C validator |