ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemdisj GIF version

Theorem ivthinclemdisj 14049
Description: Lemma for ivthinc 14052. The lower and upper cuts are disjoint. (Contributed by Jim Kingdon, 18-Feb-2024.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
ivthinc.i (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
ivthinclem.l 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
ivthinclem.r 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
Assertion
Ref Expression
ivthinclemdisj (𝜑 → (𝐿𝑅) = ∅)
Distinct variable groups:   𝑤,𝐴   𝑥,𝐴   𝑤,𝐵   𝑥,𝐵   𝑤,𝐹   𝑥,𝐹   𝑤,𝑈   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑤)   𝐴(𝑦)   𝐵(𝑦)   𝐷(𝑥,𝑦,𝑤)   𝑅(𝑥,𝑦,𝑤)   𝑈(𝑥,𝑦)   𝐹(𝑦)   𝐿(𝑥,𝑦,𝑤)

Proof of Theorem ivthinclemdisj
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fveq2 5515 . . . . . . . 8 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
21eleq1d 2246 . . . . . . 7 (𝑥 = 𝑧 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑧) ∈ ℝ))
3 ivth.8 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
43ralrimiva 2550 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
54adantr 276 . . . . . . 7 ((𝜑𝑧𝐿) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
6 fveq2 5515 . . . . . . . . . . . 12 (𝑤 = 𝑧 → (𝐹𝑤) = (𝐹𝑧))
76breq1d 4013 . . . . . . . . . . 11 (𝑤 = 𝑧 → ((𝐹𝑤) < 𝑈 ↔ (𝐹𝑧) < 𝑈))
8 ivthinclem.l . . . . . . . . . . 11 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
97, 8elrab2 2896 . . . . . . . . . 10 (𝑧𝐿 ↔ (𝑧 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑧) < 𝑈))
109biimpi 120 . . . . . . . . 9 (𝑧𝐿 → (𝑧 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑧) < 𝑈))
1110adantl 277 . . . . . . . 8 ((𝜑𝑧𝐿) → (𝑧 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑧) < 𝑈))
1211simpld 112 . . . . . . 7 ((𝜑𝑧𝐿) → 𝑧 ∈ (𝐴[,]𝐵))
132, 5, 12rspcdva 2846 . . . . . 6 ((𝜑𝑧𝐿) → (𝐹𝑧) ∈ ℝ)
14 ivth.3 . . . . . . 7 (𝜑𝑈 ∈ ℝ)
1514adantr 276 . . . . . 6 ((𝜑𝑧𝐿) → 𝑈 ∈ ℝ)
1611simprd 114 . . . . . 6 ((𝜑𝑧𝐿) → (𝐹𝑧) < 𝑈)
1713, 15, 16ltnsymd 8075 . . . . 5 ((𝜑𝑧𝐿) → ¬ 𝑈 < (𝐹𝑧))
1817intnand 931 . . . 4 ((𝜑𝑧𝐿) → ¬ (𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑈 < (𝐹𝑧)))
196breq2d 4015 . . . . 5 (𝑤 = 𝑧 → (𝑈 < (𝐹𝑤) ↔ 𝑈 < (𝐹𝑧)))
20 ivthinclem.r . . . . 5 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
2119, 20elrab2 2896 . . . 4 (𝑧𝑅 ↔ (𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑈 < (𝐹𝑧)))
2218, 21sylnibr 677 . . 3 ((𝜑𝑧𝐿) → ¬ 𝑧𝑅)
2322ralrimiva 2550 . 2 (𝜑 → ∀𝑧𝐿 ¬ 𝑧𝑅)
24 disj 3471 . 2 ((𝐿𝑅) = ∅ ↔ ∀𝑧𝐿 ¬ 𝑧𝑅)
2523, 24sylibr 134 1 (𝜑 → (𝐿𝑅) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1353  wcel 2148  wral 2455  {crab 2459  cin 3128  wss 3129  c0 3422   class class class wbr 4003  cfv 5216  (class class class)co 5874  cc 7808  cr 7809   < clt 7990  [,]cicc 9889  cnccncf 13988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-pre-ltirr 7922  ax-pre-lttrn 7924
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-xp 4632  df-cnv 4634  df-iota 5178  df-fv 5224  df-pnf 7992  df-mnf 7993  df-xr 7994  df-ltxr 7995  df-le 7996
This theorem is referenced by:  ivthinclemex  14051
  Copyright terms: Public domain W3C validator