ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemdisj GIF version

Theorem ivthinclemdisj 13029
Description: Lemma for ivthinc 13032. The lower and upper cuts are disjoint. (Contributed by Jim Kingdon, 18-Feb-2024.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
ivthinc.i (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
ivthinclem.l 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
ivthinclem.r 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
Assertion
Ref Expression
ivthinclemdisj (𝜑 → (𝐿𝑅) = ∅)
Distinct variable groups:   𝑤,𝐴   𝑥,𝐴   𝑤,𝐵   𝑥,𝐵   𝑤,𝐹   𝑥,𝐹   𝑤,𝑈   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑤)   𝐴(𝑦)   𝐵(𝑦)   𝐷(𝑥,𝑦,𝑤)   𝑅(𝑥,𝑦,𝑤)   𝑈(𝑥,𝑦)   𝐹(𝑦)   𝐿(𝑥,𝑦,𝑤)

Proof of Theorem ivthinclemdisj
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fveq2 5468 . . . . . . . 8 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
21eleq1d 2226 . . . . . . 7 (𝑥 = 𝑧 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑧) ∈ ℝ))
3 ivth.8 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
43ralrimiva 2530 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
54adantr 274 . . . . . . 7 ((𝜑𝑧𝐿) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
6 fveq2 5468 . . . . . . . . . . . 12 (𝑤 = 𝑧 → (𝐹𝑤) = (𝐹𝑧))
76breq1d 3975 . . . . . . . . . . 11 (𝑤 = 𝑧 → ((𝐹𝑤) < 𝑈 ↔ (𝐹𝑧) < 𝑈))
8 ivthinclem.l . . . . . . . . . . 11 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
97, 8elrab2 2871 . . . . . . . . . 10 (𝑧𝐿 ↔ (𝑧 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑧) < 𝑈))
109biimpi 119 . . . . . . . . 9 (𝑧𝐿 → (𝑧 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑧) < 𝑈))
1110adantl 275 . . . . . . . 8 ((𝜑𝑧𝐿) → (𝑧 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑧) < 𝑈))
1211simpld 111 . . . . . . 7 ((𝜑𝑧𝐿) → 𝑧 ∈ (𝐴[,]𝐵))
132, 5, 12rspcdva 2821 . . . . . 6 ((𝜑𝑧𝐿) → (𝐹𝑧) ∈ ℝ)
14 ivth.3 . . . . . . 7 (𝜑𝑈 ∈ ℝ)
1514adantr 274 . . . . . 6 ((𝜑𝑧𝐿) → 𝑈 ∈ ℝ)
1611simprd 113 . . . . . 6 ((𝜑𝑧𝐿) → (𝐹𝑧) < 𝑈)
1713, 15, 16ltnsymd 7995 . . . . 5 ((𝜑𝑧𝐿) → ¬ 𝑈 < (𝐹𝑧))
1817intnand 917 . . . 4 ((𝜑𝑧𝐿) → ¬ (𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑈 < (𝐹𝑧)))
196breq2d 3977 . . . . 5 (𝑤 = 𝑧 → (𝑈 < (𝐹𝑤) ↔ 𝑈 < (𝐹𝑧)))
20 ivthinclem.r . . . . 5 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
2119, 20elrab2 2871 . . . 4 (𝑧𝑅 ↔ (𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑈 < (𝐹𝑧)))
2218, 21sylnibr 667 . . 3 ((𝜑𝑧𝐿) → ¬ 𝑧𝑅)
2322ralrimiva 2530 . 2 (𝜑 → ∀𝑧𝐿 ¬ 𝑧𝑅)
24 disj 3442 . 2 ((𝐿𝑅) = ∅ ↔ ∀𝑧𝐿 ¬ 𝑧𝑅)
2523, 24sylibr 133 1 (𝜑 → (𝐿𝑅) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1335  wcel 2128  wral 2435  {crab 2439  cin 3101  wss 3102  c0 3394   class class class wbr 3965  cfv 5170  (class class class)co 5824  cc 7730  cr 7731   < clt 7912  [,]cicc 9795  cnccncf 12968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-cnex 7823  ax-resscn 7824  ax-pre-ltirr 7844  ax-pre-lttrn 7846
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-xp 4592  df-cnv 4594  df-iota 5135  df-fv 5178  df-pnf 7914  df-mnf 7915  df-xr 7916  df-ltxr 7917  df-le 7918
This theorem is referenced by:  ivthinclemex  13031
  Copyright terms: Public domain W3C validator