Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pythagtriplem8 | GIF version |
Description: Lemma for pythagtrip 12248. Show that (√‘(𝐶 − 𝐵)) is a positive integer. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
pythagtriplem8 | ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pythagtriplem6 12235 | . 2 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) = ((𝐶 − 𝐵) gcd 𝐴)) | |
2 | nnz 9243 | . . . . . 6 ⊢ (𝐶 ∈ ℕ → 𝐶 ∈ ℤ) | |
3 | nnz 9243 | . . . . . 6 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℤ) | |
4 | zsubcl 9265 | . . . . . 6 ⊢ ((𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐶 − 𝐵) ∈ ℤ) | |
5 | 2, 3, 4 | syl2anr 290 | . . . . 5 ⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐵) ∈ ℤ) |
6 | 5 | 3adant1 1015 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐵) ∈ ℤ) |
7 | nnz 9243 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
8 | 7 | 3ad2ant1 1018 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈ ℤ) |
9 | nnne0 8918 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | |
10 | 9 | neneqd 2366 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → ¬ 𝐴 = 0) |
11 | 10 | intnand 931 | . . . . 5 ⊢ (𝐴 ∈ ℕ → ¬ ((𝐶 − 𝐵) = 0 ∧ 𝐴 = 0)) |
12 | 11 | 3ad2ant1 1018 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ¬ ((𝐶 − 𝐵) = 0 ∧ 𝐴 = 0)) |
13 | gcdn0cl 11928 | . . . 4 ⊢ ((((𝐶 − 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ ¬ ((𝐶 − 𝐵) = 0 ∧ 𝐴 = 0)) → ((𝐶 − 𝐵) gcd 𝐴) ∈ ℕ) | |
14 | 6, 8, 12, 13 | syl21anc 1237 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐶 − 𝐵) gcd 𝐴) ∈ ℕ) |
15 | 14 | 3ad2ant1 1018 | . 2 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) gcd 𝐴) ∈ ℕ) |
16 | 1, 15 | eqeltrd 2252 | 1 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∧ w3a 978 = wceq 1353 ∈ wcel 2146 class class class wbr 3998 ‘cfv 5208 (class class class)co 5865 0cc0 7786 1c1 7787 + caddc 7789 − cmin 8102 ℕcn 8890 2c2 8941 ℤcz 9224 ↑cexp 10487 √csqrt 10971 ∥ cdvds 11760 gcd cgcd 11908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 ax-arch 7905 ax-caucvg 7906 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-po 4290 df-iso 4291 df-iord 4360 df-on 4362 df-ilim 4363 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-frec 6382 df-1o 6407 df-2o 6408 df-er 6525 df-en 6731 df-sup 6973 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8602 df-inn 8891 df-2 8949 df-3 8950 df-4 8951 df-n0 9148 df-z 9225 df-uz 9500 df-q 9591 df-rp 9623 df-fz 9978 df-fzo 10111 df-fl 10238 df-mod 10291 df-seqfrec 10414 df-exp 10488 df-cj 10817 df-re 10818 df-im 10819 df-rsqrt 10973 df-abs 10974 df-dvds 11761 df-gcd 11909 df-prm 12073 |
This theorem is referenced by: pythagtriplem11 12239 pythagtriplem13 12241 |
Copyright terms: Public domain | W3C validator |