![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzp1nel | GIF version |
Description: One plus the upper bound of a finite set of integers is not a member of that set. (Contributed by Scott Fenton, 16-Dec-2017.) |
Ref | Expression |
---|---|
fzp1nel | ⊢ ¬ (𝑁 + 1) ∈ (𝑀...𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 9288 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
2 | 1 | ltp1d 8918 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 < (𝑁 + 1)) |
3 | peano2z 9320 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | |
4 | zltnle 9330 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁)) | |
5 | 3, 4 | mpdan 421 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁)) |
6 | 2, 5 | mpbid 147 | . . . 4 ⊢ (𝑁 ∈ ℤ → ¬ (𝑁 + 1) ≤ 𝑁) |
7 | 6 | intnand 932 | . . 3 ⊢ (𝑁 ∈ ℤ → ¬ (𝑀 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ 𝑁)) |
8 | 7 | 3ad2ant2 1021 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → ¬ (𝑀 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ 𝑁)) |
9 | elfz2 10047 | . . . 4 ⊢ ((𝑁 + 1) ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) ∧ (𝑀 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ 𝑁))) | |
10 | 9 | notbii 669 | . . 3 ⊢ (¬ (𝑁 + 1) ∈ (𝑀...𝑁) ↔ ¬ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) ∧ (𝑀 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ 𝑁))) |
11 | imnan 691 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → ¬ (𝑀 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ 𝑁)) ↔ ¬ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) ∧ (𝑀 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ 𝑁))) | |
12 | 10, 11 | bitr4i 187 | . 2 ⊢ (¬ (𝑁 + 1) ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → ¬ (𝑀 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ 𝑁))) |
13 | 8, 12 | mpbir 146 | 1 ⊢ ¬ (𝑁 + 1) ∈ (𝑀...𝑁) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 ∈ wcel 2160 class class class wbr 4018 (class class class)co 5897 1c1 7843 + caddc 7845 < clt 8023 ≤ cle 8024 ℤcz 9284 ...cfz 10040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-addcom 7942 ax-addass 7944 ax-distr 7946 ax-i2m1 7947 ax-0lt1 7948 ax-0id 7950 ax-rnegex 7951 ax-cnre 7953 ax-pre-ltirr 7954 ax-pre-ltwlin 7955 ax-pre-lttrn 7956 ax-pre-ltadd 7958 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-iota 5196 df-fun 5237 df-fv 5243 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-pnf 8025 df-mnf 8026 df-xr 8027 df-ltxr 8028 df-le 8029 df-sub 8161 df-neg 8162 df-inn 8951 df-n0 9208 df-z 9285 df-fz 10041 |
This theorem is referenced by: fprodm1 11641 |
Copyright terms: Public domain | W3C validator |