| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unieqd | GIF version | ||
| Description: Deduction of equality of two class unions. (Contributed by NM, 21-Apr-1995.) |
| Ref | Expression |
|---|---|
| unieqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| unieqd | ⊢ (𝜑 → ∪ 𝐴 = ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | unieq 3848 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ∪ 𝐴 = ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∪ cuni 3839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-uni 3840 |
| This theorem is referenced by: uniprg 3854 unisng 3856 unisn3 4480 onsucuni2 4600 opswapg 5156 elxp4 5157 elxp5 5158 iotaeq 5227 iotabi 5228 uniabio 5229 funfvdm 5624 funfvdm2 5625 fvun1 5627 fniunfv 5809 funiunfvdm 5810 1stvalg 6200 2ndvalg 6201 fo1st 6215 fo2nd 6216 f1stres 6217 f2ndres 6218 2nd1st 6238 cnvf1olem 6282 brtpos2 6309 dftpos4 6321 tpostpos 6322 recseq 6364 tfrexlem 6392 ixpsnf1o 6795 xpcomco 6885 xpassen 6889 xpdom2 6890 supeq1 7052 supeq2 7055 supeq3 7056 supeq123d 7057 en2other2 7263 dfinfre 8983 hashinfom 10870 hashennn 10872 fsumcnv 11602 fprodcnv 11790 tgval 12933 ptex 12935 lssuni 13919 lspuni0 13980 lss0v 13986 zrhval 14173 zrhvalg 14174 zrhval2 14175 zrhpropd 14182 isbasisg 14280 basis1 14283 baspartn 14286 eltg 14288 ntrfval 14336 ntrval 14346 tgrest 14405 restuni2 14413 lmfval 14428 cnfval 14430 cnpfval 14431 txtopon 14498 txswaphmeolem 14556 peano4nninf 15650 |
| Copyright terms: Public domain | W3C validator |