ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unieqd GIF version

Theorem unieqd 3851
Description: Deduction of equality of two class unions. (Contributed by NM, 21-Apr-1995.)
Hypothesis
Ref Expression
unieqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
unieqd (𝜑 𝐴 = 𝐵)

Proof of Theorem unieqd
StepHypRef Expression
1 unieqd.1 . 2 (𝜑𝐴 = 𝐵)
2 unieq 3849 . 2 (𝐴 = 𝐵 𝐴 = 𝐵)
31, 2syl 14 1 (𝜑 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364   cuni 3840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-uni 3841
This theorem is referenced by:  uniprg  3855  unisng  3857  unisn3  4481  onsucuni2  4601  opswapg  5157  elxp4  5158  elxp5  5159  iotaeq  5228  iotabi  5229  uniabio  5230  funfvdm  5627  funfvdm2  5628  fvun1  5630  fniunfv  5812  funiunfvdm  5813  1stvalg  6209  2ndvalg  6210  fo1st  6224  fo2nd  6225  f1stres  6226  f2ndres  6227  2nd1st  6247  cnvf1olem  6291  brtpos2  6318  dftpos4  6330  tpostpos  6331  recseq  6373  tfrexlem  6401  ixpsnf1o  6804  xpcomco  6894  xpassen  6898  xpdom2  6899  supeq1  7061  supeq2  7064  supeq3  7065  supeq123d  7066  en2other2  7277  dfinfre  9002  hashinfom  10889  hashennn  10891  fsumcnv  11621  fprodcnv  11809  tgval  12966  ptex  12968  lssuni  13997  lspuni0  14058  lss0v  14064  zrhval  14251  zrhvalg  14252  zrhval2  14253  zrhpropd  14260  isbasisg  14388  basis1  14391  baspartn  14394  eltg  14396  ntrfval  14444  ntrval  14454  tgrest  14513  restuni2  14521  lmfval  14536  cnfval  14538  cnpfval  14539  txtopon  14606  txswaphmeolem  14664  peano4nninf  15761
  Copyright terms: Public domain W3C validator