![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unieqd | GIF version |
Description: Deduction of equality of two class unions. (Contributed by NM, 21-Apr-1995.) |
Ref | Expression |
---|---|
unieqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
unieqd | ⊢ (𝜑 → ∪ 𝐴 = ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | unieq 3844 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ∪ 𝐴 = ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∪ cuni 3835 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-uni 3836 |
This theorem is referenced by: uniprg 3850 unisng 3852 unisn3 4476 onsucuni2 4596 opswapg 5152 elxp4 5153 elxp5 5154 iotaeq 5223 iotabi 5224 uniabio 5225 funfvdm 5620 funfvdm2 5621 fvun1 5623 fniunfv 5805 funiunfvdm 5806 1stvalg 6195 2ndvalg 6196 fo1st 6210 fo2nd 6211 f1stres 6212 f2ndres 6213 2nd1st 6233 cnvf1olem 6277 brtpos2 6304 dftpos4 6316 tpostpos 6317 recseq 6359 tfrexlem 6387 ixpsnf1o 6790 xpcomco 6880 xpassen 6884 xpdom2 6885 supeq1 7045 supeq2 7048 supeq3 7049 supeq123d 7050 en2other2 7256 dfinfre 8975 hashinfom 10849 hashennn 10851 fsumcnv 11580 fprodcnv 11768 tgval 12873 ptex 12875 lssuni 13859 lspuni0 13920 lss0v 13926 zrhval 14105 zrhvalg 14106 zrhval2 14107 zrhpropd 14114 isbasisg 14212 basis1 14215 baspartn 14218 eltg 14220 ntrfval 14268 ntrval 14278 tgrest 14337 restuni2 14345 lmfval 14360 cnfval 14362 cnpfval 14363 txtopon 14430 txswaphmeolem 14488 peano4nninf 15496 |
Copyright terms: Public domain | W3C validator |