ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unieqd GIF version

Theorem unieqd 3800
Description: Deduction of equality of two class unions. (Contributed by NM, 21-Apr-1995.)
Hypothesis
Ref Expression
unieqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
unieqd (𝜑 𝐴 = 𝐵)

Proof of Theorem unieqd
StepHypRef Expression
1 unieqd.1 . 2 (𝜑𝐴 = 𝐵)
2 unieq 3798 . 2 (𝐴 = 𝐵 𝐴 = 𝐵)
31, 2syl 14 1 (𝜑 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343   cuni 3789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-uni 3790
This theorem is referenced by:  uniprg  3804  unisng  3806  unisn3  4423  onsucuni2  4541  opswapg  5090  elxp4  5091  elxp5  5092  iotaeq  5161  iotabi  5162  uniabio  5163  funfvdm  5549  funfvdm2  5550  fvun1  5552  fniunfv  5730  funiunfvdm  5731  1stvalg  6110  2ndvalg  6111  fo1st  6125  fo2nd  6126  f1stres  6127  f2ndres  6128  2nd1st  6148  cnvf1olem  6192  brtpos2  6219  dftpos4  6231  tpostpos  6232  recseq  6274  tfrexlem  6302  ixpsnf1o  6702  xpcomco  6792  xpassen  6796  xpdom2  6797  supeq1  6951  supeq2  6954  supeq3  6955  supeq123d  6956  en2other2  7152  dfinfre  8851  hashinfom  10691  hashennn  10693  fsumcnv  11378  fprodcnv  11566  isbasisg  12682  basis1  12685  baspartn  12688  tgval  12689  eltg  12692  ntrfval  12740  ntrval  12750  tgrest  12809  restuni2  12817  lmfval  12832  cnfval  12834  cnpfval  12835  txtopon  12902  txswaphmeolem  12960  peano4nninf  13886
  Copyright terms: Public domain W3C validator