ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unieqd GIF version

Theorem unieqd 3807
Description: Deduction of equality of two class unions. (Contributed by NM, 21-Apr-1995.)
Hypothesis
Ref Expression
unieqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
unieqd (𝜑 𝐴 = 𝐵)

Proof of Theorem unieqd
StepHypRef Expression
1 unieqd.1 . 2 (𝜑𝐴 = 𝐵)
2 unieq 3805 . 2 (𝐴 = 𝐵 𝐴 = 𝐵)
31, 2syl 14 1 (𝜑 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348   cuni 3796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-uni 3797
This theorem is referenced by:  uniprg  3811  unisng  3813  unisn3  4430  onsucuni2  4548  opswapg  5097  elxp4  5098  elxp5  5099  iotaeq  5168  iotabi  5169  uniabio  5170  funfvdm  5559  funfvdm2  5560  fvun1  5562  fniunfv  5741  funiunfvdm  5742  1stvalg  6121  2ndvalg  6122  fo1st  6136  fo2nd  6137  f1stres  6138  f2ndres  6139  2nd1st  6159  cnvf1olem  6203  brtpos2  6230  dftpos4  6242  tpostpos  6243  recseq  6285  tfrexlem  6313  ixpsnf1o  6714  xpcomco  6804  xpassen  6808  xpdom2  6809  supeq1  6963  supeq2  6966  supeq3  6967  supeq123d  6968  en2other2  7173  dfinfre  8872  hashinfom  10712  hashennn  10714  fsumcnv  11400  fprodcnv  11588  isbasisg  12836  basis1  12839  baspartn  12842  tgval  12843  eltg  12846  ntrfval  12894  ntrval  12904  tgrest  12963  restuni2  12971  lmfval  12986  cnfval  12988  cnpfval  12989  txtopon  13056  txswaphmeolem  13114  peano4nninf  14039
  Copyright terms: Public domain W3C validator