| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unieqd | GIF version | ||
| Description: Deduction of equality of two class unions. (Contributed by NM, 21-Apr-1995.) |
| Ref | Expression |
|---|---|
| unieqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| unieqd | ⊢ (𝜑 → ∪ 𝐴 = ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | unieq 3859 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ∪ 𝐴 = ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∪ cuni 3850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-uni 3851 |
| This theorem is referenced by: uniprg 3865 unisng 3867 unisn3 4492 onsucuni2 4612 opswapg 5169 elxp4 5170 elxp5 5171 iotaeq 5240 iotabi 5241 uniabio 5242 funfvdm 5642 funfvdm2 5643 fvun1 5645 fniunfv 5831 funiunfvdm 5832 1stvalg 6228 2ndvalg 6229 fo1st 6243 fo2nd 6244 f1stres 6245 f2ndres 6246 2nd1st 6266 cnvf1olem 6310 brtpos2 6337 dftpos4 6349 tpostpos 6350 recseq 6392 tfrexlem 6420 ixpsnf1o 6823 xpcomco 6921 xpassen 6925 xpdom2 6926 supeq1 7088 supeq2 7091 supeq3 7092 supeq123d 7093 en2other2 7304 dfinfre 9029 hashinfom 10923 hashennn 10925 fsumcnv 11748 fprodcnv 11936 tgval 13094 ptex 13096 lssuni 14125 lspuni0 14186 lss0v 14192 zrhval 14379 zrhvalg 14380 zrhval2 14381 zrhpropd 14388 isbasisg 14516 basis1 14519 baspartn 14522 eltg 14524 ntrfval 14572 ntrval 14582 tgrest 14641 restuni2 14649 lmfval 14664 cnfval 14666 cnpfval 14667 txtopon 14734 txswaphmeolem 14792 peano4nninf 15943 |
| Copyright terms: Public domain | W3C validator |