| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unieqd | GIF version | ||
| Description: Deduction of equality of two class unions. (Contributed by NM, 21-Apr-1995.) |
| Ref | Expression |
|---|---|
| unieqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| unieqd | ⊢ (𝜑 → ∪ 𝐴 = ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | unieq 3897 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ∪ 𝐴 = ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∪ cuni 3888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-uni 3889 |
| This theorem is referenced by: uniprg 3903 unisng 3905 unisn3 4536 onsucuni2 4656 opswapg 5215 elxp4 5216 elxp5 5217 iotaeq 5287 iotabi 5288 uniabio 5289 funfvdm 5697 funfvdm2 5698 fvun1 5700 fniunfv 5886 funiunfvdm 5887 1stvalg 6288 2ndvalg 6289 fo1st 6303 fo2nd 6304 f1stres 6305 f2ndres 6306 2nd1st 6326 cnvf1olem 6370 brtpos2 6397 dftpos4 6409 tpostpos 6410 recseq 6452 tfrexlem 6480 ixpsnf1o 6883 xpcomco 6985 xpassen 6989 xpdom2 6990 supeq1 7153 supeq2 7156 supeq3 7157 supeq123d 7158 en2other2 7374 dfinfre 9103 hashinfom 11000 hashennn 11002 fsumcnv 11948 fprodcnv 12136 tgval 13295 ptex 13297 lssuni 14327 lspuni0 14388 lss0v 14394 zrhval 14581 zrhvalg 14582 zrhval2 14583 zrhpropd 14590 isbasisg 14718 basis1 14721 baspartn 14724 eltg 14726 ntrfval 14774 ntrval 14784 tgrest 14843 restuni2 14851 lmfval 14867 cnfval 14868 cnpfval 14869 txtopon 14936 txswaphmeolem 14994 peano4nninf 16372 |
| Copyright terms: Public domain | W3C validator |