ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unieqd GIF version

Theorem unieqd 3875
Description: Deduction of equality of two class unions. (Contributed by NM, 21-Apr-1995.)
Hypothesis
Ref Expression
unieqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
unieqd (𝜑 𝐴 = 𝐵)

Proof of Theorem unieqd
StepHypRef Expression
1 unieqd.1 . 2 (𝜑𝐴 = 𝐵)
2 unieq 3873 . 2 (𝐴 = 𝐵 𝐴 = 𝐵)
31, 2syl 14 1 (𝜑 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373   cuni 3864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-uni 3865
This theorem is referenced by:  uniprg  3879  unisng  3881  unisn3  4510  onsucuni2  4630  opswapg  5188  elxp4  5189  elxp5  5190  iotaeq  5259  iotabi  5260  uniabio  5261  funfvdm  5665  funfvdm2  5666  fvun1  5668  fniunfv  5854  funiunfvdm  5855  1stvalg  6251  2ndvalg  6252  fo1st  6266  fo2nd  6267  f1stres  6268  f2ndres  6269  2nd1st  6289  cnvf1olem  6333  brtpos2  6360  dftpos4  6372  tpostpos  6373  recseq  6415  tfrexlem  6443  ixpsnf1o  6846  xpcomco  6946  xpassen  6950  xpdom2  6951  supeq1  7114  supeq2  7117  supeq3  7118  supeq123d  7119  en2other2  7335  dfinfre  9064  hashinfom  10960  hashennn  10962  fsumcnv  11863  fprodcnv  12051  tgval  13209  ptex  13211  lssuni  14240  lspuni0  14301  lss0v  14307  zrhval  14494  zrhvalg  14495  zrhval2  14496  zrhpropd  14503  isbasisg  14631  basis1  14634  baspartn  14637  eltg  14639  ntrfval  14687  ntrval  14697  tgrest  14756  restuni2  14764  lmfval  14779  cnfval  14781  cnpfval  14782  txtopon  14849  txswaphmeolem  14907  peano4nninf  16145
  Copyright terms: Public domain W3C validator