![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unieqd | GIF version |
Description: Deduction of equality of two class unions. (Contributed by NM, 21-Apr-1995.) |
Ref | Expression |
---|---|
unieqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
unieqd | ⊢ (𝜑 → ∪ 𝐴 = ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | unieq 3684 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ∪ 𝐴 = ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1296 ∪ cuni 3675 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-rex 2376 df-uni 3676 |
This theorem is referenced by: uniprg 3690 unisng 3692 unisn3 4295 onsucuni2 4408 opswapg 4951 elxp4 4952 elxp5 4953 iotaeq 5022 iotabi 5023 uniabio 5024 funfvdm 5402 funfvdm2 5403 fvun1 5405 fniunfv 5579 funiunfvdm 5580 1stvalg 5951 2ndvalg 5952 fo1st 5966 fo2nd 5967 f1stres 5968 f2ndres 5969 2nd1st 5988 cnvf1olem 6027 brtpos2 6054 dftpos4 6066 tpostpos 6067 recseq 6109 tfrexlem 6137 ixpsnf1o 6533 xpcomco 6622 xpassen 6626 xpdom2 6627 supeq1 6761 supeq2 6764 supeq3 6765 supeq123d 6766 en2other2 6919 dfinfre 8514 hashinfom 10317 hashennn 10319 fsumcnv 10995 isbasisg 11909 basis1 11912 baspartn 11915 tgval 11916 eltg 11919 ntrfval 11967 ntrval 11977 tgrest 12036 restuni2 12044 lmfval 12059 cnfval 12061 cnpfval 12062 peano4nninf 12605 |
Copyright terms: Public domain | W3C validator |