![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfmptg | GIF version |
Description: Alternate definition for the maps-to notation df-mpt 4068 (which requires that 𝐵 be a set). (Contributed by Jim Kingdon, 9-Jan-2019.) |
Ref | Expression |
---|---|
dfmptg | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 {⟨𝑥, 𝐵⟩}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfmpt3 5340 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) | |
2 | vex 2742 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | xpsng 5693 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝐵 ∈ 𝑉) → ({𝑥} × {𝐵}) = {⟨𝑥, 𝐵⟩}) | |
4 | 2, 3 | mpan 424 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → ({𝑥} × {𝐵}) = {⟨𝑥, 𝐵⟩}) |
5 | 4 | ralimi 2540 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) = {⟨𝑥, 𝐵⟩}) |
6 | iuneq2 3904 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) = {⟨𝑥, 𝐵⟩} → ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) = ∪ 𝑥 ∈ 𝐴 {⟨𝑥, 𝐵⟩}) | |
7 | 5, 6 | syl 14 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) = ∪ 𝑥 ∈ 𝐴 {⟨𝑥, 𝐵⟩}) |
8 | 1, 7 | eqtrid 2222 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 {⟨𝑥, 𝐵⟩}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 ∀wral 2455 Vcvv 2739 {csn 3594 ⟨cop 3597 ∪ ciun 3888 ↦ cmpt 4066 × cxp 4626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 |
This theorem is referenced by: fnasrng 5698 |
Copyright terms: Public domain | W3C validator |