ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfmptg GIF version

Theorem dfmptg 5697
Description: Alternate definition for the maps-to notation df-mpt 4068 (which requires that 𝐵 be a set). (Contributed by Jim Kingdon, 9-Jan-2019.)
Assertion
Ref Expression
dfmptg (∀𝑥𝐴 𝐵𝑉 → (𝑥𝐴𝐵) = 𝑥𝐴 {⟨𝑥, 𝐵⟩})

Proof of Theorem dfmptg
StepHypRef Expression
1 dfmpt3 5340 . 2 (𝑥𝐴𝐵) = 𝑥𝐴 ({𝑥} × {𝐵})
2 vex 2742 . . . . 5 𝑥 ∈ V
3 xpsng 5693 . . . . 5 ((𝑥 ∈ V ∧ 𝐵𝑉) → ({𝑥} × {𝐵}) = {⟨𝑥, 𝐵⟩})
42, 3mpan 424 . . . 4 (𝐵𝑉 → ({𝑥} × {𝐵}) = {⟨𝑥, 𝐵⟩})
54ralimi 2540 . . 3 (∀𝑥𝐴 𝐵𝑉 → ∀𝑥𝐴 ({𝑥} × {𝐵}) = {⟨𝑥, 𝐵⟩})
6 iuneq2 3904 . . 3 (∀𝑥𝐴 ({𝑥} × {𝐵}) = {⟨𝑥, 𝐵⟩} → 𝑥𝐴 ({𝑥} × {𝐵}) = 𝑥𝐴 {⟨𝑥, 𝐵⟩})
75, 6syl 14 . 2 (∀𝑥𝐴 𝐵𝑉 𝑥𝐴 ({𝑥} × {𝐵}) = 𝑥𝐴 {⟨𝑥, 𝐵⟩})
81, 7eqtrid 2222 1 (∀𝑥𝐴 𝐵𝑉 → (𝑥𝐴𝐵) = 𝑥𝐴 {⟨𝑥, 𝐵⟩})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  wral 2455  Vcvv 2739  {csn 3594  cop 3597   ciun 3888  cmpt 4066   × cxp 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225
This theorem is referenced by:  fnasrng  5698
  Copyright terms: Public domain W3C validator