Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfmptg | GIF version |
Description: Alternate definition for the maps-to notation df-mpt 4045 (which requires that 𝐵 be a set). (Contributed by Jim Kingdon, 9-Jan-2019.) |
Ref | Expression |
---|---|
dfmptg | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfmpt3 5310 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) | |
2 | vex 2729 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | xpsng 5660 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝐵 ∈ 𝑉) → ({𝑥} × {𝐵}) = {〈𝑥, 𝐵〉}) | |
4 | 2, 3 | mpan 421 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → ({𝑥} × {𝐵}) = {〈𝑥, 𝐵〉}) |
5 | 4 | ralimi 2529 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) = {〈𝑥, 𝐵〉}) |
6 | iuneq2 3882 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) = {〈𝑥, 𝐵〉} → ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) = ∪ 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉}) | |
7 | 5, 6 | syl 14 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) = ∪ 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉}) |
8 | 1, 7 | syl5eq 2211 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 ∀wral 2444 Vcvv 2726 {csn 3576 〈cop 3579 ∪ ciun 3866 ↦ cmpt 4043 × cxp 4602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 |
This theorem is referenced by: fnasrng 5665 |
Copyright terms: Public domain | W3C validator |