ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfmptg GIF version

Theorem dfmptg 5664
Description: Alternate definition for the maps-to notation df-mpt 4045 (which requires that 𝐵 be a set). (Contributed by Jim Kingdon, 9-Jan-2019.)
Assertion
Ref Expression
dfmptg (∀𝑥𝐴 𝐵𝑉 → (𝑥𝐴𝐵) = 𝑥𝐴 {⟨𝑥, 𝐵⟩})

Proof of Theorem dfmptg
StepHypRef Expression
1 dfmpt3 5310 . 2 (𝑥𝐴𝐵) = 𝑥𝐴 ({𝑥} × {𝐵})
2 vex 2729 . . . . 5 𝑥 ∈ V
3 xpsng 5660 . . . . 5 ((𝑥 ∈ V ∧ 𝐵𝑉) → ({𝑥} × {𝐵}) = {⟨𝑥, 𝐵⟩})
42, 3mpan 421 . . . 4 (𝐵𝑉 → ({𝑥} × {𝐵}) = {⟨𝑥, 𝐵⟩})
54ralimi 2529 . . 3 (∀𝑥𝐴 𝐵𝑉 → ∀𝑥𝐴 ({𝑥} × {𝐵}) = {⟨𝑥, 𝐵⟩})
6 iuneq2 3882 . . 3 (∀𝑥𝐴 ({𝑥} × {𝐵}) = {⟨𝑥, 𝐵⟩} → 𝑥𝐴 ({𝑥} × {𝐵}) = 𝑥𝐴 {⟨𝑥, 𝐵⟩})
75, 6syl 14 . 2 (∀𝑥𝐴 𝐵𝑉 𝑥𝐴 ({𝑥} × {𝐵}) = 𝑥𝐴 {⟨𝑥, 𝐵⟩})
81, 7syl5eq 2211 1 (∀𝑥𝐴 𝐵𝑉 → (𝑥𝐴𝐵) = 𝑥𝐴 {⟨𝑥, 𝐵⟩})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  wral 2444  Vcvv 2726  {csn 3576  cop 3579   ciun 3866  cmpt 4043   × cxp 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195
This theorem is referenced by:  fnasrng  5665
  Copyright terms: Public domain W3C validator