Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfmptg | GIF version |
Description: Alternate definition for the maps-to notation df-mpt 4061 (which requires that 𝐵 be a set). (Contributed by Jim Kingdon, 9-Jan-2019.) |
Ref | Expression |
---|---|
dfmptg | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfmpt3 5330 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) | |
2 | vex 2738 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | xpsng 5683 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝐵 ∈ 𝑉) → ({𝑥} × {𝐵}) = {〈𝑥, 𝐵〉}) | |
4 | 2, 3 | mpan 424 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → ({𝑥} × {𝐵}) = {〈𝑥, 𝐵〉}) |
5 | 4 | ralimi 2538 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) = {〈𝑥, 𝐵〉}) |
6 | iuneq2 3898 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) = {〈𝑥, 𝐵〉} → ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) = ∪ 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉}) | |
7 | 5, 6 | syl 14 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) = ∪ 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉}) |
8 | 1, 7 | eqtrid 2220 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2146 ∀wral 2453 Vcvv 2735 {csn 3589 〈cop 3592 ∪ ciun 3882 ↦ cmpt 4059 × cxp 4618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-reu 2460 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 |
This theorem is referenced by: fnasrng 5688 |
Copyright terms: Public domain | W3C validator |