ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jca32 GIF version

Theorem jca32 310
Description: Join three consequents. (Contributed by FL, 1-Aug-2009.)
Hypotheses
Ref Expression
jca31.1 (𝜑𝜓)
jca31.2 (𝜑𝜒)
jca31.3 (𝜑𝜃)
Assertion
Ref Expression
jca32 (𝜑 → (𝜓 ∧ (𝜒𝜃)))

Proof of Theorem jca32
StepHypRef Expression
1 jca31.1 . 2 (𝜑𝜓)
2 jca31.2 . . 3 (𝜑𝜒)
3 jca31.3 . . 3 (𝜑𝜃)
42, 3jca 306 . 2 (𝜑 → (𝜒𝜃))
51, 4jca 306 1 (𝜑 → (𝜓 ∧ (𝜒𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  syl12anc  1247  euan  2101  imadiflem  5338  supelti  7077  ltexnqq  7492  enq0sym  7516  enq0tr  7518  addclpr  7621  mulclpr  7656  ltexprlemopl  7685  ltexprlemlol  7686  ltexprlemopu  7687  ltexprlemupu  7688  suplocexprlemloc  7805  lemul12a  8906  elfzd  10108  fzass4  10154  elfz1b  10182  4fvwrd4  10232  leexp1a  10703  sqrt0rlem  11185  reumodprminv  12447  islmodd  13925  uptx  14594  distspace  14655  xmetxpbl  14828  bj-charfundc  15538
  Copyright terms: Public domain W3C validator