ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jca32 GIF version

Theorem jca32 310
Description: Join three consequents. (Contributed by FL, 1-Aug-2009.)
Hypotheses
Ref Expression
jca31.1 (𝜑𝜓)
jca31.2 (𝜑𝜒)
jca31.3 (𝜑𝜃)
Assertion
Ref Expression
jca32 (𝜑 → (𝜓 ∧ (𝜒𝜃)))

Proof of Theorem jca32
StepHypRef Expression
1 jca31.1 . 2 (𝜑𝜓)
2 jca31.2 . . 3 (𝜑𝜒)
3 jca31.3 . . 3 (𝜑𝜃)
42, 3jca 306 . 2 (𝜑 → (𝜒𝜃))
51, 4jca 306 1 (𝜑 → (𝜓 ∧ (𝜒𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  syl12anc  1247  euan  2101  imadiflem  5338  supelti  7077  ltexnqq  7494  enq0sym  7518  enq0tr  7520  addclpr  7623  mulclpr  7658  ltexprlemopl  7687  ltexprlemlol  7688  ltexprlemopu  7689  ltexprlemupu  7690  suplocexprlemloc  7807  lemul12a  8908  elfzd  10110  fzass4  10156  elfz1b  10184  4fvwrd4  10234  leexp1a  10705  sqrt0rlem  11187  reumodprminv  12449  islmodd  13927  uptx  14618  distspace  14679  xmetxpbl  14852  bj-charfundc  15562
  Copyright terms: Public domain W3C validator