Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > jca32 | GIF version |
Description: Join three consequents. (Contributed by FL, 1-Aug-2009.) |
Ref | Expression |
---|---|
jca31.1 | ⊢ (𝜑 → 𝜓) |
jca31.2 | ⊢ (𝜑 → 𝜒) |
jca31.3 | ⊢ (𝜑 → 𝜃) |
Ref | Expression |
---|---|
jca32 | ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jca31.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | jca31.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | jca31.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 2, 3 | jca 304 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
5 | 1, 4 | jca 304 | 1 ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 |
This theorem is referenced by: syl12anc 1226 euan 2070 imadiflem 5266 supelti 6963 ltexnqq 7345 enq0sym 7369 enq0tr 7371 addclpr 7474 mulclpr 7509 ltexprlemopl 7538 ltexprlemlol 7539 ltexprlemopu 7540 ltexprlemupu 7541 suplocexprlemloc 7658 lemul12a 8753 fzass4 9993 elfz1b 10021 4fvwrd4 10071 leexp1a 10506 sqrt0rlem 10941 reumodprminv 12181 uptx 12874 distspace 12935 xmetxpbl 13108 bj-charfundc 13650 |
Copyright terms: Public domain | W3C validator |