| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jca32 | GIF version | ||
| Description: Join three consequents. (Contributed by FL, 1-Aug-2009.) |
| Ref | Expression |
|---|---|
| jca31.1 | ⊢ (𝜑 → 𝜓) |
| jca31.2 | ⊢ (𝜑 → 𝜒) |
| jca31.3 | ⊢ (𝜑 → 𝜃) |
| Ref | Expression |
|---|---|
| jca32 | ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jca31.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | jca31.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | jca31.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | 2, 3 | jca 306 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
| 5 | 1, 4 | jca 306 | 1 ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: syl12anc 1247 euan 2101 imadiflem 5338 supelti 7077 ltexnqq 7494 enq0sym 7518 enq0tr 7520 addclpr 7623 mulclpr 7658 ltexprlemopl 7687 ltexprlemlol 7688 ltexprlemopu 7689 ltexprlemupu 7690 suplocexprlemloc 7807 lemul12a 8908 elfzd 10110 fzass4 10156 elfz1b 10184 4fvwrd4 10234 leexp1a 10705 sqrt0rlem 11187 reumodprminv 12449 islmodd 13927 uptx 14618 distspace 14679 xmetxpbl 14852 bj-charfundc 15562 |
| Copyright terms: Public domain | W3C validator |