| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jca32 | GIF version | ||
| Description: Join three consequents. (Contributed by FL, 1-Aug-2009.) |
| Ref | Expression |
|---|---|
| jca31.1 | ⊢ (𝜑 → 𝜓) |
| jca31.2 | ⊢ (𝜑 → 𝜒) |
| jca31.3 | ⊢ (𝜑 → 𝜃) |
| Ref | Expression |
|---|---|
| jca32 | ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jca31.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | jca31.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | jca31.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | 2, 3 | jca 306 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
| 5 | 1, 4 | jca 306 | 1 ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: syl12anc 1248 euan 2111 imadiflem 5361 domssr 6881 supelti 7118 ltexnqq 7536 enq0sym 7560 enq0tr 7562 addclpr 7665 mulclpr 7700 ltexprlemopl 7729 ltexprlemlol 7730 ltexprlemopu 7731 ltexprlemupu 7732 suplocexprlemloc 7849 lemul12a 8950 elfzd 10153 fzass4 10199 elfz1b 10227 4fvwrd4 10277 leexp1a 10756 wrd2ind 11194 sqrt0rlem 11384 reumodprminv 12646 islmodd 14125 uptx 14816 distspace 14877 xmetxpbl 15050 bj-charfundc 15878 |
| Copyright terms: Public domain | W3C validator |