![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > jca32 | GIF version |
Description: Join three consequents. (Contributed by FL, 1-Aug-2009.) |
Ref | Expression |
---|---|
jca31.1 | ⊢ (𝜑 → 𝜓) |
jca31.2 | ⊢ (𝜑 → 𝜒) |
jca31.3 | ⊢ (𝜑 → 𝜃) |
Ref | Expression |
---|---|
jca32 | ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jca31.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | jca31.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | jca31.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 2, 3 | jca 306 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
5 | 1, 4 | jca 306 | 1 ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: syl12anc 1236 euan 2082 imadiflem 5295 supelti 7000 ltexnqq 7406 enq0sym 7430 enq0tr 7432 addclpr 7535 mulclpr 7570 ltexprlemopl 7599 ltexprlemlol 7600 ltexprlemopu 7601 ltexprlemupu 7602 suplocexprlemloc 7719 lemul12a 8818 elfzd 10015 fzass4 10061 elfz1b 10089 4fvwrd4 10139 leexp1a 10574 sqrt0rlem 11011 reumodprminv 12252 islmodd 13381 uptx 13744 distspace 13805 xmetxpbl 13978 bj-charfundc 14530 |
Copyright terms: Public domain | W3C validator |