ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jca32 GIF version

Theorem jca32 310
Description: Join three consequents. (Contributed by FL, 1-Aug-2009.)
Hypotheses
Ref Expression
jca31.1 (𝜑𝜓)
jca31.2 (𝜑𝜒)
jca31.3 (𝜑𝜃)
Assertion
Ref Expression
jca32 (𝜑 → (𝜓 ∧ (𝜒𝜃)))

Proof of Theorem jca32
StepHypRef Expression
1 jca31.1 . 2 (𝜑𝜓)
2 jca31.2 . . 3 (𝜑𝜒)
3 jca31.3 . . 3 (𝜑𝜃)
42, 3jca 306 . 2 (𝜑 → (𝜒𝜃))
51, 4jca 306 1 (𝜑 → (𝜓 ∧ (𝜒𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  syl12anc  1236  euan  2082  imadiflem  5295  supelti  7000  ltexnqq  7406  enq0sym  7430  enq0tr  7432  addclpr  7535  mulclpr  7570  ltexprlemopl  7599  ltexprlemlol  7600  ltexprlemopu  7601  ltexprlemupu  7602  suplocexprlemloc  7719  lemul12a  8818  elfzd  10015  fzass4  10061  elfz1b  10089  4fvwrd4  10139  leexp1a  10574  sqrt0rlem  11011  reumodprminv  12252  islmodd  13381  uptx  13744  distspace  13805  xmetxpbl  13978  bj-charfundc  14530
  Copyright terms: Public domain W3C validator