![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > jca32 | GIF version |
Description: Join three consequents. (Contributed by FL, 1-Aug-2009.) |
Ref | Expression |
---|---|
jca31.1 | ⊢ (𝜑 → 𝜓) |
jca31.2 | ⊢ (𝜑 → 𝜒) |
jca31.3 | ⊢ (𝜑 → 𝜃) |
Ref | Expression |
---|---|
jca32 | ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jca31.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | jca31.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | jca31.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 2, 3 | jca 301 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
5 | 1, 4 | jca 301 | 1 ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia3 107 |
This theorem is referenced by: syl12anc 1179 euan 2011 imadiflem 5127 supelti 6777 ltexnqq 7064 enq0sym 7088 enq0tr 7090 addclpr 7193 mulclpr 7228 ltexprlemopl 7257 ltexprlemlol 7258 ltexprlemopu 7259 ltexprlemupu 7260 lemul12a 8420 fzass4 9625 elfz1b 9653 4fvwrd4 9700 leexp1a 10141 sqrt0rlem 10567 distspace 12136 |
Copyright terms: Public domain | W3C validator |