ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jca32 GIF version

Theorem jca32 310
Description: Join three consequents. (Contributed by FL, 1-Aug-2009.)
Hypotheses
Ref Expression
jca31.1 (𝜑𝜓)
jca31.2 (𝜑𝜒)
jca31.3 (𝜑𝜃)
Assertion
Ref Expression
jca32 (𝜑 → (𝜓 ∧ (𝜒𝜃)))

Proof of Theorem jca32
StepHypRef Expression
1 jca31.1 . 2 (𝜑𝜓)
2 jca31.2 . . 3 (𝜑𝜒)
3 jca31.3 . . 3 (𝜑𝜃)
42, 3jca 306 . 2 (𝜑 → (𝜒𝜃))
51, 4jca 306 1 (𝜑 → (𝜓 ∧ (𝜒𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  syl12anc  1269  euan  2134  imadiflem  5399  domssr  6927  supelti  7165  ltexnqq  7591  enq0sym  7615  enq0tr  7617  addclpr  7720  mulclpr  7755  ltexprlemopl  7784  ltexprlemlol  7785  ltexprlemopu  7786  ltexprlemupu  7787  suplocexprlemloc  7904  lemul12a  9005  elfzd  10208  fzass4  10254  elfz1b  10282  4fvwrd4  10332  leexp1a  10811  wrd2ind  11250  sqrt0rlem  11509  reumodprminv  12771  islmodd  14251  uptx  14942  distspace  15003  xmetxpbl  15176  bj-charfundc  16129
  Copyright terms: Public domain W3C validator