![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > jca32 | GIF version |
Description: Join three consequents. (Contributed by FL, 1-Aug-2009.) |
Ref | Expression |
---|---|
jca31.1 | ⊢ (𝜑 → 𝜓) |
jca31.2 | ⊢ (𝜑 → 𝜒) |
jca31.3 | ⊢ (𝜑 → 𝜃) |
Ref | Expression |
---|---|
jca32 | ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jca31.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | jca31.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | jca31.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 2, 3 | jca 306 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
5 | 1, 4 | jca 306 | 1 ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: syl12anc 1247 euan 2098 imadiflem 5334 supelti 7063 ltexnqq 7470 enq0sym 7494 enq0tr 7496 addclpr 7599 mulclpr 7634 ltexprlemopl 7663 ltexprlemlol 7664 ltexprlemopu 7665 ltexprlemupu 7666 suplocexprlemloc 7783 lemul12a 8883 elfzd 10085 fzass4 10131 elfz1b 10159 4fvwrd4 10209 leexp1a 10668 sqrt0rlem 11150 reumodprminv 12394 islmodd 13792 uptx 14453 distspace 14514 xmetxpbl 14687 bj-charfundc 15370 |
Copyright terms: Public domain | W3C validator |