| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jca32 | GIF version | ||
| Description: Join three consequents. (Contributed by FL, 1-Aug-2009.) |
| Ref | Expression |
|---|---|
| jca31.1 | ⊢ (𝜑 → 𝜓) |
| jca31.2 | ⊢ (𝜑 → 𝜒) |
| jca31.3 | ⊢ (𝜑 → 𝜃) |
| Ref | Expression |
|---|---|
| jca32 | ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jca31.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | jca31.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | jca31.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | 2, 3 | jca 306 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
| 5 | 1, 4 | jca 306 | 1 ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: syl12anc 1269 euan 2134 imadiflem 5399 domssr 6927 supelti 7165 ltexnqq 7591 enq0sym 7615 enq0tr 7617 addclpr 7720 mulclpr 7755 ltexprlemopl 7784 ltexprlemlol 7785 ltexprlemopu 7786 ltexprlemupu 7787 suplocexprlemloc 7904 lemul12a 9005 elfzd 10208 fzass4 10254 elfz1b 10282 4fvwrd4 10332 leexp1a 10811 wrd2ind 11250 sqrt0rlem 11509 reumodprminv 12771 islmodd 14251 uptx 14942 distspace 15003 xmetxpbl 15176 bj-charfundc 16129 |
| Copyright terms: Public domain | W3C validator |