ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemupu GIF version

Theorem ltexprlemupu 7566
Description: The upper cut of our constructed difference is upper. Lemma for ltexpri 7575. (Contributed by Jim Kingdon, 21-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
Assertion
Ref Expression
ltexprlemupu ((𝐴<P 𝐵𝑟Q) → (∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)) → 𝑟 ∈ (2nd𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑞,𝑟,𝐴   𝑥,𝐵,𝑦,𝑞,𝑟   𝑥,𝐶,𝑦,𝑞,𝑟

Proof of Theorem ltexprlemupu
StepHypRef Expression
1 simplr 525 . . . . . 6 (((𝐴<P 𝐵𝑟Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))) → 𝑟Q)
2 simprrr 535 . . . . . . 7 (((𝐴<P 𝐵𝑟Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))) → (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))
32simpld 111 . . . . . 6 (((𝐴<P 𝐵𝑟Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))) → 𝑦 ∈ (1st𝐴))
4 simprl 526 . . . . . . . 8 (((𝐴<P 𝐵𝑟Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))) → 𝑞 <Q 𝑟)
5 simpll 524 . . . . . . . . 9 (((𝐴<P 𝐵𝑟Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))) → 𝐴<P 𝐵)
6 simprrl 534 . . . . . . . . . 10 ((𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))) → 𝑦 ∈ (1st𝐴))
76adantl 275 . . . . . . . . 9 (((𝐴<P 𝐵𝑟Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))) → 𝑦 ∈ (1st𝐴))
8 ltrelpr 7467 . . . . . . . . . . . . 13 <P ⊆ (P × P)
98brel 4663 . . . . . . . . . . . 12 (𝐴<P 𝐵 → (𝐴P𝐵P))
109simpld 111 . . . . . . . . . . 11 (𝐴<P 𝐵𝐴P)
11 prop 7437 . . . . . . . . . . 11 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
1210, 11syl 14 . . . . . . . . . 10 (𝐴<P 𝐵 → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
13 elprnql 7443 . . . . . . . . . 10 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (1st𝐴)) → 𝑦Q)
1412, 13sylan 281 . . . . . . . . 9 ((𝐴<P 𝐵𝑦 ∈ (1st𝐴)) → 𝑦Q)
155, 7, 14syl2anc 409 . . . . . . . 8 (((𝐴<P 𝐵𝑟Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))) → 𝑦Q)
16 ltanqi 7364 . . . . . . . 8 ((𝑞 <Q 𝑟𝑦Q) → (𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟))
174, 15, 16syl2anc 409 . . . . . . 7 (((𝐴<P 𝐵𝑟Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))) → (𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟))
189simprd 113 . . . . . . . . 9 (𝐴<P 𝐵𝐵P)
195, 18syl 14 . . . . . . . 8 (((𝐴<P 𝐵𝑟Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))) → 𝐵P)
202simprd 113 . . . . . . . 8 (((𝐴<P 𝐵𝑟Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))) → (𝑦 +Q 𝑞) ∈ (2nd𝐵))
21 prop 7437 . . . . . . . . 9 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
22 prcunqu 7447 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)) → ((𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟) → (𝑦 +Q 𝑟) ∈ (2nd𝐵)))
2321, 22sylan 281 . . . . . . . 8 ((𝐵P ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)) → ((𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟) → (𝑦 +Q 𝑟) ∈ (2nd𝐵)))
2419, 20, 23syl2anc 409 . . . . . . 7 (((𝐴<P 𝐵𝑟Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))) → ((𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟) → (𝑦 +Q 𝑟) ∈ (2nd𝐵)))
2517, 24mpd 13 . . . . . 6 (((𝐴<P 𝐵𝑟Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))) → (𝑦 +Q 𝑟) ∈ (2nd𝐵))
261, 3, 25jca32 308 . . . . 5 (((𝐴<P 𝐵𝑟Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))) → (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))))
2726eximi 1593 . . . 4 (∃𝑦((𝐴<P 𝐵𝑟Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))) → ∃𝑦(𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))))
28 ltexprlem.1 . . . . . . . . . 10 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
2928ltexprlemelu 7561 . . . . . . . . 9 (𝑞 ∈ (2nd𝐶) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))
30 19.42v 1899 . . . . . . . . 9 (∃𝑦(𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))
3129, 30bitr4i 186 . . . . . . . 8 (𝑞 ∈ (2nd𝐶) ↔ ∃𝑦(𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))
3231anbi2i 454 . . . . . . 7 ((𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)) ↔ (𝑞 <Q 𝑟 ∧ ∃𝑦(𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
33 19.42v 1899 . . . . . . 7 (∃𝑦(𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))) ↔ (𝑞 <Q 𝑟 ∧ ∃𝑦(𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
3432, 33bitr4i 186 . . . . . 6 ((𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)) ↔ ∃𝑦(𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
3534anbi2i 454 . . . . 5 (((𝐴<P 𝐵𝑟Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶))) ↔ ((𝐴<P 𝐵𝑟Q) ∧ ∃𝑦(𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))))
36 19.42v 1899 . . . . 5 (∃𝑦((𝐴<P 𝐵𝑟Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))) ↔ ((𝐴<P 𝐵𝑟Q) ∧ ∃𝑦(𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))))
3735, 36bitr4i 186 . . . 4 (((𝐴<P 𝐵𝑟Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶))) ↔ ∃𝑦((𝐴<P 𝐵𝑟Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))))
3828ltexprlemelu 7561 . . . . 5 (𝑟 ∈ (2nd𝐶) ↔ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))))
39 19.42v 1899 . . . . 5 (∃𝑦(𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))) ↔ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))))
4038, 39bitr4i 186 . . . 4 (𝑟 ∈ (2nd𝐶) ↔ ∃𝑦(𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))))
4127, 37, 403imtr4i 200 . . 3 (((𝐴<P 𝐵𝑟Q) ∧ (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶))) → 𝑟 ∈ (2nd𝐶))
4241ex 114 . 2 ((𝐴<P 𝐵𝑟Q) → ((𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)) → 𝑟 ∈ (2nd𝐶)))
4342rexlimdvw 2591 1 ((𝐴<P 𝐵𝑟Q) → (∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)) → 𝑟 ∈ (2nd𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wex 1485  wcel 2141  wrex 2449  {crab 2452  cop 3586   class class class wbr 3989  cfv 5198  (class class class)co 5853  1st c1st 6117  2nd c2nd 6118  Qcnq 7242   +Q cplq 7244   <Q cltq 7247  Pcnp 7253  <P cltp 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-ltnqqs 7315  df-inp 7428  df-iltp 7432
This theorem is referenced by:  ltexprlemrnd  7567
  Copyright terms: Public domain W3C validator