ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzd GIF version

Theorem elfzd 10168
Description: Membership in a finite set of sequential integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
elfzd.1 (𝜑𝑀 ∈ ℤ)
elfzd.2 (𝜑𝑁 ∈ ℤ)
elfzd.3 (𝜑𝐾 ∈ ℤ)
elfzd.4 (𝜑𝑀𝐾)
elfzd.5 (𝜑𝐾𝑁)
Assertion
Ref Expression
elfzd (𝜑𝐾 ∈ (𝑀...𝑁))

Proof of Theorem elfzd
StepHypRef Expression
1 elfzd.1 . . . 4 (𝜑𝑀 ∈ ℤ)
2 elfzd.2 . . . 4 (𝜑𝑁 ∈ ℤ)
3 elfzd.3 . . . 4 (𝜑𝐾 ∈ ℤ)
41, 2, 33jca 1180 . . 3 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ))
5 elfzd.4 . . 3 (𝜑𝑀𝐾)
6 elfzd.5 . . 3 (𝜑𝐾𝑁)
74, 5, 6jca32 310 . 2 (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)))
8 elfz2 10167 . 2 (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)))
97, 8sylibr 134 1 (𝜑𝐾 ∈ (𝑀...𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981  wcel 2177   class class class wbr 4054  (class class class)co 5962  cle 8138  cz 9402  ...cfz 10160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-setind 4598  ax-cnex 8046  ax-resscn 8047
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-iota 5246  df-fun 5287  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-neg 8276  df-z 9403  df-fz 10161
This theorem is referenced by:  fzoun  10335  seqf1oglem1  10696  seqfeq4g  10708  4sqexercise1  12806  4sqexercise2  12807  4sqlemsdc  12808  gsumfzfsumlemm  14434  lgseisenlem1  15632  lgsquadlem1  15639
  Copyright terms: Public domain W3C validator