| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzd | GIF version | ||
| Description: Membership in a finite set of sequential integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| elfzd.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| elfzd.2 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| elfzd.3 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| elfzd.4 | ⊢ (𝜑 → 𝑀 ≤ 𝐾) |
| elfzd.5 | ⊢ (𝜑 → 𝐾 ≤ 𝑁) |
| Ref | Expression |
|---|---|
| elfzd | ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzd.1 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | elfzd.2 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 3 | elfzd.3 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
| 4 | 1, 2, 3 | 3jca 1201 | . . 3 ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) |
| 5 | elfzd.4 | . . 3 ⊢ (𝜑 → 𝑀 ≤ 𝐾) | |
| 6 | elfzd.5 | . . 3 ⊢ (𝜑 → 𝐾 ≤ 𝑁) | |
| 7 | 4, 5, 6 | jca32 310 | . 2 ⊢ (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| 8 | elfz2 10207 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
| 9 | 7, 8 | sylibr 134 | 1 ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 ∈ wcel 2200 class class class wbr 4082 (class class class)co 6000 ≤ cle 8178 ℤcz 9442 ...cfz 10200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-neg 8316 df-z 9443 df-fz 10201 |
| This theorem is referenced by: fzoun 10375 seqf1oglem1 10736 seqfeq4g 10748 pfxccat3 11261 4sqexercise1 12916 4sqexercise2 12917 4sqlemsdc 12918 gsumfzfsumlemm 14545 lgseisenlem1 15743 lgsquadlem1 15750 |
| Copyright terms: Public domain | W3C validator |