![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elfzd | GIF version |
Description: Membership in a finite set of sequential integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
elfzd.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
elfzd.2 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
elfzd.3 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
elfzd.4 | ⊢ (𝜑 → 𝑀 ≤ 𝐾) |
elfzd.5 | ⊢ (𝜑 → 𝐾 ≤ 𝑁) |
Ref | Expression |
---|---|
elfzd | ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzd.1 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | elfzd.2 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
3 | elfzd.3 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
4 | 1, 2, 3 | 3jca 1179 | . . 3 ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) |
5 | elfzd.4 | . . 3 ⊢ (𝜑 → 𝑀 ≤ 𝐾) | |
6 | elfzd.5 | . . 3 ⊢ (𝜑 → 𝐾 ≤ 𝑁) | |
7 | 4, 5, 6 | jca32 310 | . 2 ⊢ (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
8 | elfz2 10081 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
9 | 7, 8 | sylibr 134 | 1 ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 ∈ wcel 2164 class class class wbr 4029 (class class class)co 5918 ≤ cle 8055 ℤcz 9317 ...cfz 10074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-neg 8193 df-z 9318 df-fz 10075 |
This theorem is referenced by: seqf1oglem1 10590 seqfeq4g 10602 4sqexercise1 12536 4sqexercise2 12537 4sqlemsdc 12538 gsumfzfsumlemm 14075 lgseisenlem1 15186 lgsquadlem1 15191 |
Copyright terms: Public domain | W3C validator |