ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supelti GIF version

Theorem supelti 7035
Description: Supremum membership in a set. (Contributed by Jim Kingdon, 16-Jan-2022.)
Hypotheses
Ref Expression
supelti.ti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
supelti.ex (𝜑 → ∃𝑥𝐶 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
supelti.ss (𝜑𝐶𝐴)
Assertion
Ref Expression
supelti (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐶)
Distinct variable groups:   𝑢,𝐴,𝑣,𝑥   𝑦,𝐴,𝑧,𝑥   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶   𝑢,𝑅,𝑣,𝑥   𝑦,𝑅,𝑧   𝜑,𝑢,𝑣,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐵(𝑣,𝑢)   𝐶(𝑦,𝑧,𝑣,𝑢)

Proof of Theorem supelti
StepHypRef Expression
1 supelti.ti . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
2 supelti.ss . . . . . 6 (𝜑𝐶𝐴)
3 supelti.ex . . . . . 6 (𝜑 → ∃𝑥𝐶 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
4 ssrexv 3235 . . . . . 6 (𝐶𝐴 → (∃𝑥𝐶 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
52, 3, 4sylc 62 . . . . 5 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
61, 5supclti 7031 . . . 4 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
7 elisset 2766 . . . 4 (sup(𝐵, 𝐴, 𝑅) ∈ 𝐴 → ∃𝑥 𝑥 = sup(𝐵, 𝐴, 𝑅))
86, 7syl 14 . . 3 (𝜑 → ∃𝑥 𝑥 = sup(𝐵, 𝐴, 𝑅))
9 eqcom 2191 . . . 4 (𝑥 = sup(𝐵, 𝐴, 𝑅) ↔ sup(𝐵, 𝐴, 𝑅) = 𝑥)
109exbii 1616 . . 3 (∃𝑥 𝑥 = sup(𝐵, 𝐴, 𝑅) ↔ ∃𝑥sup(𝐵, 𝐴, 𝑅) = 𝑥)
118, 10sylib 122 . 2 (𝜑 → ∃𝑥sup(𝐵, 𝐴, 𝑅) = 𝑥)
12 simpr 110 . . 3 ((𝜑 ∧ sup(𝐵, 𝐴, 𝑅) = 𝑥) → sup(𝐵, 𝐴, 𝑅) = 𝑥)
131, 5supval2ti 7028 . . . . . . . 8 (𝜑 → sup(𝐵, 𝐴, 𝑅) = (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
1413eqeq1d 2198 . . . . . . 7 (𝜑 → (sup(𝐵, 𝐴, 𝑅) = 𝑥 ↔ (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) = 𝑥))
1514biimpa 296 . . . . . 6 ((𝜑 ∧ sup(𝐵, 𝐴, 𝑅) = 𝑥) → (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) = 𝑥)
161, 5supeuti 7027 . . . . . . . 8 (𝜑 → ∃!𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
17 riota1 5874 . . . . . . . 8 (∃!𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) → ((𝑥𝐴 ∧ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) ↔ (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) = 𝑥))
1816, 17syl 14 . . . . . . 7 (𝜑 → ((𝑥𝐴 ∧ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) ↔ (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) = 𝑥))
1918adantr 276 . . . . . 6 ((𝜑 ∧ sup(𝐵, 𝐴, 𝑅) = 𝑥) → ((𝑥𝐴 ∧ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) ↔ (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) = 𝑥))
2015, 19mpbird 167 . . . . 5 ((𝜑 ∧ sup(𝐵, 𝐴, 𝑅) = 𝑥) → (𝑥𝐴 ∧ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
2120simpld 112 . . . 4 ((𝜑 ∧ sup(𝐵, 𝐴, 𝑅) = 𝑥) → 𝑥𝐴)
222, 3, 16jca32 310 . . . . 5 (𝜑 → (𝐶𝐴 ∧ (∃𝑥𝐶 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) ∧ ∃!𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))))
2320simprd 114 . . . . 5 ((𝜑 ∧ sup(𝐵, 𝐴, 𝑅) = 𝑥) → (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
24 reupick 3434 . . . . 5 (((𝐶𝐴 ∧ (∃𝑥𝐶 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) ∧ ∃!𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))) ∧ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) → (𝑥𝐶𝑥𝐴))
2522, 23, 24syl2an2r 595 . . . 4 ((𝜑 ∧ sup(𝐵, 𝐴, 𝑅) = 𝑥) → (𝑥𝐶𝑥𝐴))
2621, 25mpbird 167 . . 3 ((𝜑 ∧ sup(𝐵, 𝐴, 𝑅) = 𝑥) → 𝑥𝐶)
2712, 26eqeltrd 2266 . 2 ((𝜑 ∧ sup(𝐵, 𝐴, 𝑅) = 𝑥) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐶)
2811, 27exlimddv 1910 1 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wex 1503  wcel 2160  wral 2468  wrex 2469  ∃!wreu 2470  wss 3144   class class class wbr 4021  crio 5854  supcsup 7015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-br 4022  df-iota 5199  df-riota 5855  df-sup 7017
This theorem is referenced by:  zsupcl  11989
  Copyright terms: Public domain W3C validator