![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addclpr | GIF version |
Description: Closure of addition on positive reals. First statement of Proposition 9-3.5 of [Gleason] p. 123. Combination of Lemma 11.13 and Lemma 11.16 in [BauerTaylor], p. 53. (Contributed by NM, 13-Mar-1996.) |
Ref | Expression |
---|---|
addclpr | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) ∈ P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iplp 7530 | . . . 4 ⊢ +P = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦 +Q 𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦 +Q 𝑧))}〉) | |
2 | 1 | genpelxp 7573 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) ∈ (𝒫 Q × 𝒫 Q)) |
3 | addclnq 7437 | . . . 4 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦 +Q 𝑧) ∈ Q) | |
4 | 1, 3 | genpml 7579 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∃𝑞 ∈ Q 𝑞 ∈ (1st ‘(𝐴 +P 𝐵))) |
5 | 1, 3 | genpmu 7580 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∃𝑟 ∈ Q 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵))) |
6 | 2, 4, 5 | jca32 310 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 +P 𝐵) ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∧ ∃𝑟 ∈ Q 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵))))) |
7 | ltanqg 7462 | . . . . 5 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑥 <Q 𝑦 ↔ (𝑧 +Q 𝑥) <Q (𝑧 +Q 𝑦))) | |
8 | addcomnqg 7443 | . . . . 5 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥 +Q 𝑦) = (𝑦 +Q 𝑥)) | |
9 | addnqprl 7591 | . . . . 5 ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ (1st ‘𝐴)) ∧ (𝐵 ∈ P ∧ ℎ ∈ (1st ‘𝐵))) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔 +Q ℎ) → 𝑥 ∈ (1st ‘(𝐴 +P 𝐵)))) | |
10 | 1, 3, 7, 8, 9 | genprndl 7583 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∀𝑞 ∈ Q (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘(𝐴 +P 𝐵))))) |
11 | addnqpru 7592 | . . . . 5 ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ (2nd ‘𝐴)) ∧ (𝐵 ∈ P ∧ ℎ ∈ (2nd ‘𝐵))) ∧ 𝑥 ∈ Q) → ((𝑔 +Q ℎ) <Q 𝑥 → 𝑥 ∈ (2nd ‘(𝐴 +P 𝐵)))) | |
12 | 1, 3, 7, 8, 11 | genprndu 7584 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘(𝐴 +P 𝐵))))) |
13 | 10, 12 | jca 306 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (∀𝑞 ∈ Q (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘(𝐴 +P 𝐵)))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘(𝐴 +P 𝐵)))))) |
14 | 1, 3, 7, 8 | genpdisj 7585 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∀𝑞 ∈ Q ¬ (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
15 | addlocpr 7598 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵))))) | |
16 | 13, 14, 15 | 3jca 1179 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((∀𝑞 ∈ Q (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘(𝐴 +P 𝐵)))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘(𝐴 +P 𝐵))))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴 +P 𝐵))) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))) |
17 | elnp1st2nd 7538 | . 2 ⊢ ((𝐴 +P 𝐵) ∈ P ↔ (((𝐴 +P 𝐵) ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∧ ∃𝑟 ∈ Q 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘(𝐴 +P 𝐵)))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘(𝐴 +P 𝐵))))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴 +P 𝐵))) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵))))))) | |
18 | 6, 16, 17 | sylanbrc 417 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) ∈ P) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∧ w3a 980 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 𝒫 cpw 3602 class class class wbr 4030 × cxp 4658 ‘cfv 5255 (class class class)co 5919 1st c1st 6193 2nd c2nd 6194 Qcnq 7342 +Q cplq 7344 <Q cltq 7347 Pcnp 7353 +P cpp 7355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-eprel 4321 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-1o 6471 df-2o 6472 df-oadd 6475 df-omul 6476 df-er 6589 df-ec 6591 df-qs 6595 df-ni 7366 df-pli 7367 df-mi 7368 df-lti 7369 df-plpq 7406 df-mpq 7407 df-enq 7409 df-nqqs 7410 df-plqqs 7411 df-mqqs 7412 df-1nqqs 7413 df-rq 7414 df-ltnqqs 7415 df-enq0 7486 df-nq0 7487 df-0nq0 7488 df-plq0 7489 df-mq0 7490 df-inp 7528 df-iplp 7530 |
This theorem is referenced by: addnqprlemfl 7621 addnqprlemfu 7622 addnqpr 7623 addassprg 7641 distrlem1prl 7644 distrlem1pru 7645 distrlem4prl 7646 distrlem4pru 7647 distrprg 7650 ltaddpr 7659 ltexpri 7675 addcanprleml 7676 addcanprlemu 7677 ltaprlem 7680 ltaprg 7681 prplnqu 7682 addextpr 7683 caucvgprlemcanl 7706 cauappcvgprlemladdru 7718 cauappcvgprlemladdrl 7719 cauappcvgprlemladd 7720 cauappcvgprlem1 7721 caucvgprlemladdrl 7740 caucvgprlem1 7741 caucvgprprlemnbj 7755 caucvgprprlemopu 7761 caucvgprprlemloc 7765 caucvgprprlemexbt 7768 caucvgprprlemexb 7769 caucvgprprlemaddq 7770 caucvgprprlem2 7772 enrer 7797 addcmpblnr 7801 mulcmpblnrlemg 7802 mulcmpblnr 7803 ltsrprg 7809 1sr 7813 m1r 7814 addclsr 7815 mulclsr 7816 addasssrg 7818 mulasssrg 7820 distrsrg 7821 m1p1sr 7822 m1m1sr 7823 lttrsr 7824 ltsosr 7826 0lt1sr 7827 0idsr 7829 1idsr 7830 00sr 7831 ltasrg 7832 recexgt0sr 7835 mulgt0sr 7840 aptisr 7841 mulextsr1lem 7842 mulextsr1 7843 archsr 7844 srpospr 7845 prsrcl 7846 prsradd 7848 prsrlt 7849 caucvgsrlemcau 7855 caucvgsrlemgt1 7857 mappsrprg 7866 map2psrprg 7867 pitonnlem1p1 7908 pitonnlem2 7909 pitonn 7910 pitoregt0 7911 pitore 7912 recnnre 7913 recidpirqlemcalc 7919 recidpirq 7920 |
Copyright terms: Public domain | W3C validator |