ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addclpr GIF version

Theorem addclpr 7538
Description: Closure of addition on positive reals. First statement of Proposition 9-3.5 of [Gleason] p. 123. Combination of Lemma 11.13 and Lemma 11.16 in [BauerTaylor], p. 53. (Contributed by NM, 13-Mar-1996.)
Assertion
Ref Expression
addclpr ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)

Proof of Theorem addclpr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑔 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iplp 7469 . . . 4 +P = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦 +Q 𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦 +Q 𝑧))}⟩)
21genpelxp 7512 . . 3 ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ (𝒫 Q × 𝒫 Q))
3 addclnq 7376 . . . 4 ((𝑦Q𝑧Q) → (𝑦 +Q 𝑧) ∈ Q)
41, 3genpml 7518 . . 3 ((𝐴P𝐵P) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴 +P 𝐵)))
51, 3genpmu 7519 . . 3 ((𝐴P𝐵P) → ∃𝑟Q 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))
62, 4, 5jca32 310 . 2 ((𝐴P𝐵P) → ((𝐴 +P 𝐵) ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞Q 𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∧ ∃𝑟Q 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))
7 ltanqg 7401 . . . . 5 ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧 +Q 𝑥) <Q (𝑧 +Q 𝑦)))
8 addcomnqg 7382 . . . . 5 ((𝑥Q𝑦Q) → (𝑥 +Q 𝑦) = (𝑦 +Q 𝑥))
9 addnqprl 7530 . . . . 5 ((((𝐴P𝑔 ∈ (1st𝐴)) ∧ (𝐵P ∈ (1st𝐵))) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → 𝑥 ∈ (1st ‘(𝐴 +P 𝐵))))
101, 3, 7, 8, 9genprndl 7522 . . . 4 ((𝐴P𝐵P) → ∀𝑞Q (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴 +P 𝐵)))))
11 addnqpru 7531 . . . . 5 ((((𝐴P𝑔 ∈ (2nd𝐴)) ∧ (𝐵P ∈ (2nd𝐵))) ∧ 𝑥Q) → ((𝑔 +Q ) <Q 𝑥𝑥 ∈ (2nd ‘(𝐴 +P 𝐵))))
121, 3, 7, 8, 11genprndu 7523 . . . 4 ((𝐴P𝐵P) → ∀𝑟Q (𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴 +P 𝐵)))))
1310, 12jca 306 . . 3 ((𝐴P𝐵P) → (∀𝑞Q (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴 +P 𝐵)))) ∧ ∀𝑟Q (𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴 +P 𝐵))))))
141, 3, 7, 8genpdisj 7524 . . 3 ((𝐴P𝐵P) → ∀𝑞Q ¬ (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴 +P 𝐵))))
15 addlocpr 7537 . . 3 ((𝐴P𝐵P) → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))
1613, 14, 153jca 1177 . 2 ((𝐴P𝐵P) → ((∀𝑞Q (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴 +P 𝐵)))) ∧ ∀𝑟Q (𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴 +P 𝐵))))) ∧ ∀𝑞Q ¬ (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴 +P 𝐵))) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵))))))
17 elnp1st2nd 7477 . 2 ((𝐴 +P 𝐵) ∈ P ↔ (((𝐴 +P 𝐵) ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞Q 𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∧ ∃𝑟Q 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))) ∧ ((∀𝑞Q (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴 +P 𝐵)))) ∧ ∀𝑟Q (𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴 +P 𝐵))))) ∧ ∀𝑞Q ¬ (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴 +P 𝐵))) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))))
186, 16, 17sylanbrc 417 1 ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  w3a 978  wcel 2148  wral 2455  wrex 2456  𝒫 cpw 3577   class class class wbr 4005   × cxp 4626  cfv 5218  (class class class)co 5877  1st c1st 6141  2nd c2nd 6142  Qcnq 7281   +Q cplq 7283   <Q cltq 7286  Pcnp 7292   +P cpp 7294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-2o 6420  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-lti 7308  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351  df-1nqqs 7352  df-rq 7353  df-ltnqqs 7354  df-enq0 7425  df-nq0 7426  df-0nq0 7427  df-plq0 7428  df-mq0 7429  df-inp 7467  df-iplp 7469
This theorem is referenced by:  addnqprlemfl  7560  addnqprlemfu  7561  addnqpr  7562  addassprg  7580  distrlem1prl  7583  distrlem1pru  7584  distrlem4prl  7585  distrlem4pru  7586  distrprg  7589  ltaddpr  7598  ltexpri  7614  addcanprleml  7615  addcanprlemu  7616  ltaprlem  7619  ltaprg  7620  prplnqu  7621  addextpr  7622  caucvgprlemcanl  7645  cauappcvgprlemladdru  7657  cauappcvgprlemladdrl  7658  cauappcvgprlemladd  7659  cauappcvgprlem1  7660  caucvgprlemladdrl  7679  caucvgprlem1  7680  caucvgprprlemnbj  7694  caucvgprprlemopu  7700  caucvgprprlemloc  7704  caucvgprprlemexbt  7707  caucvgprprlemexb  7708  caucvgprprlemaddq  7709  caucvgprprlem2  7711  enrer  7736  addcmpblnr  7740  mulcmpblnrlemg  7741  mulcmpblnr  7742  ltsrprg  7748  1sr  7752  m1r  7753  addclsr  7754  mulclsr  7755  addasssrg  7757  mulasssrg  7759  distrsrg  7760  m1p1sr  7761  m1m1sr  7762  lttrsr  7763  ltsosr  7765  0lt1sr  7766  0idsr  7768  1idsr  7769  00sr  7770  ltasrg  7771  recexgt0sr  7774  mulgt0sr  7779  aptisr  7780  mulextsr1lem  7781  mulextsr1  7782  archsr  7783  srpospr  7784  prsrcl  7785  prsradd  7787  prsrlt  7788  caucvgsrlemcau  7794  caucvgsrlemgt1  7796  mappsrprg  7805  map2psrprg  7806  pitonnlem1p1  7847  pitonnlem2  7848  pitonn  7849  pitoregt0  7850  pitore  7851  recnnre  7852  recidpirqlemcalc  7858  recidpirq  7859
  Copyright terms: Public domain W3C validator