ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addclpr GIF version

Theorem addclpr 6999
Description: Closure of addition on positive reals. First statement of Proposition 9-3.5 of [Gleason] p. 123. Combination of Lemma 11.13 and Lemma 11.16 in [BauerTaylor], p. 53. (Contributed by NM, 13-Mar-1996.)
Assertion
Ref Expression
addclpr ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)

Proof of Theorem addclpr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑔 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iplp 6930 . . . 4 +P = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦 +Q 𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦 +Q 𝑧))}⟩)
21genpelxp 6973 . . 3 ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ (𝒫 Q × 𝒫 Q))
3 addclnq 6837 . . . 4 ((𝑦Q𝑧Q) → (𝑦 +Q 𝑧) ∈ Q)
41, 3genpml 6979 . . 3 ((𝐴P𝐵P) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴 +P 𝐵)))
51, 3genpmu 6980 . . 3 ((𝐴P𝐵P) → ∃𝑟Q 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))
62, 4, 5jca32 303 . 2 ((𝐴P𝐵P) → ((𝐴 +P 𝐵) ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞Q 𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∧ ∃𝑟Q 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))
7 ltanqg 6862 . . . . 5 ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧 +Q 𝑥) <Q (𝑧 +Q 𝑦)))
8 addcomnqg 6843 . . . . 5 ((𝑥Q𝑦Q) → (𝑥 +Q 𝑦) = (𝑦 +Q 𝑥))
9 addnqprl 6991 . . . . 5 ((((𝐴P𝑔 ∈ (1st𝐴)) ∧ (𝐵P ∈ (1st𝐵))) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → 𝑥 ∈ (1st ‘(𝐴 +P 𝐵))))
101, 3, 7, 8, 9genprndl 6983 . . . 4 ((𝐴P𝐵P) → ∀𝑞Q (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴 +P 𝐵)))))
11 addnqpru 6992 . . . . 5 ((((𝐴P𝑔 ∈ (2nd𝐴)) ∧ (𝐵P ∈ (2nd𝐵))) ∧ 𝑥Q) → ((𝑔 +Q ) <Q 𝑥𝑥 ∈ (2nd ‘(𝐴 +P 𝐵))))
121, 3, 7, 8, 11genprndu 6984 . . . 4 ((𝐴P𝐵P) → ∀𝑟Q (𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴 +P 𝐵)))))
1310, 12jca 300 . . 3 ((𝐴P𝐵P) → (∀𝑞Q (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴 +P 𝐵)))) ∧ ∀𝑟Q (𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴 +P 𝐵))))))
141, 3, 7, 8genpdisj 6985 . . 3 ((𝐴P𝐵P) → ∀𝑞Q ¬ (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴 +P 𝐵))))
15 addlocpr 6998 . . 3 ((𝐴P𝐵P) → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))
1613, 14, 153jca 1119 . 2 ((𝐴P𝐵P) → ((∀𝑞Q (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴 +P 𝐵)))) ∧ ∀𝑟Q (𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴 +P 𝐵))))) ∧ ∀𝑞Q ¬ (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴 +P 𝐵))) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵))))))
17 elnp1st2nd 6938 . 2 ((𝐴 +P 𝐵) ∈ P ↔ (((𝐴 +P 𝐵) ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞Q 𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∧ ∃𝑟Q 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))) ∧ ((∀𝑞Q (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴 +P 𝐵)))) ∧ ∀𝑟Q (𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴 +P 𝐵))))) ∧ ∀𝑞Q ¬ (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴 +P 𝐵))) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))))
186, 16, 17sylanbrc 408 1 ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 662  w3a 920  wcel 1434  wral 2353  wrex 2354  𝒫 cpw 3406   class class class wbr 3811   × cxp 4399  cfv 4969  (class class class)co 5591  1st c1st 5844  2nd c2nd 5845  Qcnq 6742   +Q cplq 6744   <Q cltq 6747  Pcnp 6753   +P cpp 6755
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-eprel 4080  df-id 4084  df-po 4087  df-iso 4088  df-iord 4157  df-on 4159  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-1st 5846  df-2nd 5847  df-recs 6002  df-irdg 6067  df-1o 6113  df-2o 6114  df-oadd 6117  df-omul 6118  df-er 6222  df-ec 6224  df-qs 6228  df-ni 6766  df-pli 6767  df-mi 6768  df-lti 6769  df-plpq 6806  df-mpq 6807  df-enq 6809  df-nqqs 6810  df-plqqs 6811  df-mqqs 6812  df-1nqqs 6813  df-rq 6814  df-ltnqqs 6815  df-enq0 6886  df-nq0 6887  df-0nq0 6888  df-plq0 6889  df-mq0 6890  df-inp 6928  df-iplp 6930
This theorem is referenced by:  addnqprlemfl  7021  addnqprlemfu  7022  addnqpr  7023  addassprg  7041  distrlem1prl  7044  distrlem1pru  7045  distrlem4prl  7046  distrlem4pru  7047  distrprg  7050  ltaddpr  7059  ltexpri  7075  addcanprleml  7076  addcanprlemu  7077  ltaprlem  7080  ltaprg  7081  prplnqu  7082  addextpr  7083  caucvgprlemcanl  7106  cauappcvgprlemladdru  7118  cauappcvgprlemladdrl  7119  cauappcvgprlemladd  7120  cauappcvgprlem1  7121  caucvgprlemladdrl  7140  caucvgprlem1  7141  caucvgprprlemnbj  7155  caucvgprprlemopu  7161  caucvgprprlemloc  7165  caucvgprprlemexbt  7168  caucvgprprlemexb  7169  caucvgprprlemaddq  7170  caucvgprprlem2  7172  enrer  7184  addcmpblnr  7188  mulcmpblnrlemg  7189  mulcmpblnr  7190  ltsrprg  7196  1sr  7200  m1r  7201  addclsr  7202  mulclsr  7203  addasssrg  7205  mulasssrg  7207  distrsrg  7208  m1p1sr  7209  m1m1sr  7210  lttrsr  7211  ltsosr  7213  0lt1sr  7214  0idsr  7216  1idsr  7217  00sr  7218  ltasrg  7219  recexgt0sr  7222  mulgt0sr  7226  aptisr  7227  mulextsr1lem  7228  mulextsr1  7229  archsr  7230  srpospr  7231  prsrcl  7232  prsradd  7234  prsrlt  7235  caucvgsrlemcau  7241  caucvgsrlemgt1  7243  pitonnlem1p1  7286  pitonnlem2  7287  pitonn  7288  pitoregt0  7289  pitore  7290  recnnre  7291  recidpirqlemcalc  7297  recidpirq  7298
  Copyright terms: Public domain W3C validator