![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addclpr | GIF version |
Description: Closure of addition on positive reals. First statement of Proposition 9-3.5 of [Gleason] p. 123. Combination of Lemma 11.13 and Lemma 11.16 in [BauerTaylor], p. 53. (Contributed by NM, 13-Mar-1996.) |
Ref | Expression |
---|---|
addclpr | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) ∈ P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iplp 7124 | . . . 4 ⊢ +P = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦 +Q 𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦 +Q 𝑧))}〉) | |
2 | 1 | genpelxp 7167 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) ∈ (𝒫 Q × 𝒫 Q)) |
3 | addclnq 7031 | . . . 4 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦 +Q 𝑧) ∈ Q) | |
4 | 1, 3 | genpml 7173 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∃𝑞 ∈ Q 𝑞 ∈ (1st ‘(𝐴 +P 𝐵))) |
5 | 1, 3 | genpmu 7174 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∃𝑟 ∈ Q 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵))) |
6 | 2, 4, 5 | jca32 304 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 +P 𝐵) ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∧ ∃𝑟 ∈ Q 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵))))) |
7 | ltanqg 7056 | . . . . 5 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑥 <Q 𝑦 ↔ (𝑧 +Q 𝑥) <Q (𝑧 +Q 𝑦))) | |
8 | addcomnqg 7037 | . . . . 5 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥 +Q 𝑦) = (𝑦 +Q 𝑥)) | |
9 | addnqprl 7185 | . . . . 5 ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ (1st ‘𝐴)) ∧ (𝐵 ∈ P ∧ ℎ ∈ (1st ‘𝐵))) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔 +Q ℎ) → 𝑥 ∈ (1st ‘(𝐴 +P 𝐵)))) | |
10 | 1, 3, 7, 8, 9 | genprndl 7177 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∀𝑞 ∈ Q (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘(𝐴 +P 𝐵))))) |
11 | addnqpru 7186 | . . . . 5 ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ (2nd ‘𝐴)) ∧ (𝐵 ∈ P ∧ ℎ ∈ (2nd ‘𝐵))) ∧ 𝑥 ∈ Q) → ((𝑔 +Q ℎ) <Q 𝑥 → 𝑥 ∈ (2nd ‘(𝐴 +P 𝐵)))) | |
12 | 1, 3, 7, 8, 11 | genprndu 7178 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘(𝐴 +P 𝐵))))) |
13 | 10, 12 | jca 301 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (∀𝑞 ∈ Q (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘(𝐴 +P 𝐵)))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘(𝐴 +P 𝐵)))))) |
14 | 1, 3, 7, 8 | genpdisj 7179 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∀𝑞 ∈ Q ¬ (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴 +P 𝐵)))) |
15 | addlocpr 7192 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵))))) | |
16 | 13, 14, 15 | 3jca 1126 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((∀𝑞 ∈ Q (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘(𝐴 +P 𝐵)))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘(𝐴 +P 𝐵))))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴 +P 𝐵))) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))) |
17 | elnp1st2nd 7132 | . 2 ⊢ ((𝐴 +P 𝐵) ∈ P ↔ (((𝐴 +P 𝐵) ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∧ ∃𝑟 ∈ Q 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘(𝐴 +P 𝐵)))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘(𝐴 +P 𝐵))))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴 +P 𝐵))) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵))))))) | |
18 | 6, 16, 17 | sylanbrc 409 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) ∈ P) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 667 ∧ w3a 927 ∈ wcel 1445 ∀wral 2370 ∃wrex 2371 𝒫 cpw 3449 class class class wbr 3867 × cxp 4465 ‘cfv 5049 (class class class)co 5690 1st c1st 5947 2nd c2nd 5948 Qcnq 6936 +Q cplq 6938 <Q cltq 6941 Pcnp 6947 +P cpp 6949 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-coll 3975 ax-sep 3978 ax-nul 3986 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-iinf 4431 |
This theorem depends on definitions: df-bi 116 df-dc 784 df-3or 928 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-ral 2375 df-rex 2376 df-reu 2377 df-rab 2379 df-v 2635 df-sbc 2855 df-csb 2948 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-nul 3303 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-iun 3754 df-br 3868 df-opab 3922 df-mpt 3923 df-tr 3959 df-eprel 4140 df-id 4144 df-po 4147 df-iso 4148 df-iord 4217 df-on 4219 df-suc 4222 df-iom 4434 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-f1 5054 df-fo 5055 df-f1o 5056 df-fv 5057 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-1st 5949 df-2nd 5950 df-recs 6108 df-irdg 6173 df-1o 6219 df-2o 6220 df-oadd 6223 df-omul 6224 df-er 6332 df-ec 6334 df-qs 6338 df-ni 6960 df-pli 6961 df-mi 6962 df-lti 6963 df-plpq 7000 df-mpq 7001 df-enq 7003 df-nqqs 7004 df-plqqs 7005 df-mqqs 7006 df-1nqqs 7007 df-rq 7008 df-ltnqqs 7009 df-enq0 7080 df-nq0 7081 df-0nq0 7082 df-plq0 7083 df-mq0 7084 df-inp 7122 df-iplp 7124 |
This theorem is referenced by: addnqprlemfl 7215 addnqprlemfu 7216 addnqpr 7217 addassprg 7235 distrlem1prl 7238 distrlem1pru 7239 distrlem4prl 7240 distrlem4pru 7241 distrprg 7244 ltaddpr 7253 ltexpri 7269 addcanprleml 7270 addcanprlemu 7271 ltaprlem 7274 ltaprg 7275 prplnqu 7276 addextpr 7277 caucvgprlemcanl 7300 cauappcvgprlemladdru 7312 cauappcvgprlemladdrl 7313 cauappcvgprlemladd 7314 cauappcvgprlem1 7315 caucvgprlemladdrl 7334 caucvgprlem1 7335 caucvgprprlemnbj 7349 caucvgprprlemopu 7355 caucvgprprlemloc 7359 caucvgprprlemexbt 7362 caucvgprprlemexb 7363 caucvgprprlemaddq 7364 caucvgprprlem2 7366 enrer 7378 addcmpblnr 7382 mulcmpblnrlemg 7383 mulcmpblnr 7384 ltsrprg 7390 1sr 7394 m1r 7395 addclsr 7396 mulclsr 7397 addasssrg 7399 mulasssrg 7401 distrsrg 7402 m1p1sr 7403 m1m1sr 7404 lttrsr 7405 ltsosr 7407 0lt1sr 7408 0idsr 7410 1idsr 7411 00sr 7412 ltasrg 7413 recexgt0sr 7416 mulgt0sr 7420 aptisr 7421 mulextsr1lem 7422 mulextsr1 7423 archsr 7424 srpospr 7425 prsrcl 7426 prsradd 7428 prsrlt 7429 caucvgsrlemcau 7435 caucvgsrlemgt1 7437 pitonnlem1p1 7480 pitonnlem2 7481 pitonn 7482 pitoregt0 7483 pitore 7484 recnnre 7485 recidpirqlemcalc 7491 recidpirq 7492 |
Copyright terms: Public domain | W3C validator |