| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-nqqs 7415 | 
. . 3
⊢
Q = ((N × N) /
~Q ) | 
| 2 |   | breq1 4036 | 
. . . 4
⊢
([〈𝑦, 𝑧〉]
~Q = 𝐴 → ([〈𝑦, 𝑧〉] ~Q
<Q [〈𝑤, 𝑣〉] ~Q ↔
𝐴
<Q [〈𝑤, 𝑣〉] ~Q
)) | 
| 3 |   | oveq1 5929 | 
. . . . . 6
⊢
([〈𝑦, 𝑧〉]
~Q = 𝐴 → ([〈𝑦, 𝑧〉] ~Q
+Q 𝑥) = (𝐴 +Q 𝑥)) | 
| 4 | 3 | eqeq1d 2205 | 
. . . . 5
⊢
([〈𝑦, 𝑧〉]
~Q = 𝐴 → (([〈𝑦, 𝑧〉] ~Q
+Q 𝑥) = [〈𝑤, 𝑣〉] ~Q ↔
(𝐴
+Q 𝑥) = [〈𝑤, 𝑣〉] ~Q
)) | 
| 5 | 4 | rexbidv 2498 | 
. . . 4
⊢
([〈𝑦, 𝑧〉]
~Q = 𝐴 → (∃𝑥 ∈ Q ([〈𝑦, 𝑧〉] ~Q
+Q 𝑥) = [〈𝑤, 𝑣〉] ~Q ↔
∃𝑥 ∈
Q (𝐴
+Q 𝑥) = [〈𝑤, 𝑣〉] ~Q
)) | 
| 6 | 2, 5 | imbi12d 234 | 
. . 3
⊢
([〈𝑦, 𝑧〉]
~Q = 𝐴 → (([〈𝑦, 𝑧〉] ~Q
<Q [〈𝑤, 𝑣〉] ~Q →
∃𝑥 ∈
Q ([〈𝑦,
𝑧〉]
~Q +Q 𝑥) = [〈𝑤, 𝑣〉] ~Q ) ↔
(𝐴
<Q [〈𝑤, 𝑣〉] ~Q →
∃𝑥 ∈
Q (𝐴
+Q 𝑥) = [〈𝑤, 𝑣〉] ~Q
))) | 
| 7 |   | breq2 4037 | 
. . . 4
⊢
([〈𝑤, 𝑣〉]
~Q = 𝐵 → (𝐴 <Q [〈𝑤, 𝑣〉] ~Q ↔
𝐴
<Q 𝐵)) | 
| 8 |   | eqeq2 2206 | 
. . . . 5
⊢
([〈𝑤, 𝑣〉]
~Q = 𝐵 → ((𝐴 +Q 𝑥) = [〈𝑤, 𝑣〉] ~Q ↔
(𝐴
+Q 𝑥) = 𝐵)) | 
| 9 | 8 | rexbidv 2498 | 
. . . 4
⊢
([〈𝑤, 𝑣〉]
~Q = 𝐵 → (∃𝑥 ∈ Q (𝐴 +Q 𝑥) = [〈𝑤, 𝑣〉] ~Q ↔
∃𝑥 ∈
Q (𝐴
+Q 𝑥) = 𝐵)) | 
| 10 | 7, 9 | imbi12d 234 | 
. . 3
⊢
([〈𝑤, 𝑣〉]
~Q = 𝐵 → ((𝐴 <Q [〈𝑤, 𝑣〉] ~Q →
∃𝑥 ∈
Q (𝐴
+Q 𝑥) = [〈𝑤, 𝑣〉] ~Q ) ↔
(𝐴
<Q 𝐵 → ∃𝑥 ∈ Q (𝐴 +Q 𝑥) = 𝐵))) | 
| 11 |   | ordpipqqs 7441 | 
. . . 4
⊢ (((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) → ([〈𝑦, 𝑧〉] ~Q
<Q [〈𝑤, 𝑣〉] ~Q ↔
(𝑦
·N 𝑣) <N (𝑧
·N 𝑤))) | 
| 12 |   | mulclpi 7395 | 
. . . . . . . . 9
⊢ ((𝑦 ∈ N ∧
𝑣 ∈ N)
→ (𝑦
·N 𝑣) ∈ N) | 
| 13 |   | mulclpi 7395 | 
. . . . . . . . 9
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N)
→ (𝑧
·N 𝑤) ∈ N) | 
| 14 | 12, 13 | anim12i 338 | 
. . . . . . . 8
⊢ (((𝑦 ∈ N ∧
𝑣 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N)) → ((𝑦 ·N 𝑣) ∈ N ∧
(𝑧
·N 𝑤) ∈ N)) | 
| 15 | 14 | an42s 589 | 
. . . . . . 7
⊢ (((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) → ((𝑦 ·N 𝑣) ∈ N ∧
(𝑧
·N 𝑤) ∈ N)) | 
| 16 |   | ltexpi 7404 | 
. . . . . . 7
⊢ (((𝑦
·N 𝑣) ∈ N ∧ (𝑧
·N 𝑤) ∈ N) → ((𝑦
·N 𝑣) <N (𝑧
·N 𝑤) ↔ ∃𝑢 ∈ N ((𝑦 ·N 𝑣) +N
𝑢) = (𝑧 ·N 𝑤))) | 
| 17 | 15, 16 | syl 14 | 
. . . . . 6
⊢ (((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) → ((𝑦 ·N 𝑣) <N
(𝑧
·N 𝑤) ↔ ∃𝑢 ∈ N ((𝑦 ·N 𝑣) +N
𝑢) = (𝑧 ·N 𝑤))) | 
| 18 |   | df-rex 2481 | 
. . . . . 6
⊢
(∃𝑢 ∈
N ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤) ↔ ∃𝑢(𝑢 ∈ N ∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) | 
| 19 | 17, 18 | bitrdi 196 | 
. . . . 5
⊢ (((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) → ((𝑦 ·N 𝑣) <N
(𝑧
·N 𝑤) ↔ ∃𝑢(𝑢 ∈ N ∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)))) | 
| 20 |   | simpll 527 | 
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) ∧ 𝑢 ∈ N) → (𝑦 ∈ N ∧
𝑧 ∈
N)) | 
| 21 |   | simpr 110 | 
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) ∧ 𝑢 ∈ N) → 𝑢 ∈
N) | 
| 22 |   | simpr 110 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ N ∧
𝑧 ∈ N)
→ 𝑧 ∈
N) | 
| 23 |   | simpr 110 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑤 ∈ N ∧
𝑣 ∈ N)
→ 𝑣 ∈
N) | 
| 24 | 22, 23 | anim12i 338 | 
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) → (𝑧 ∈ N ∧ 𝑣 ∈
N)) | 
| 25 | 24 | adantr 276 | 
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) ∧ 𝑢 ∈ N) → (𝑧 ∈ N ∧
𝑣 ∈
N)) | 
| 26 |   | mulclpi 7395 | 
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ N ∧
𝑣 ∈ N)
→ (𝑧
·N 𝑣) ∈ N) | 
| 27 | 25, 26 | syl 14 | 
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) ∧ 𝑢 ∈ N) → (𝑧
·N 𝑣) ∈ N) | 
| 28 | 20, 21, 27 | jca32 310 | 
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) ∧ 𝑢 ∈ N) → ((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑢 ∈
N ∧ (𝑧
·N 𝑣) ∈ N))) | 
| 29 | 28 | adantrr 479 | 
. . . . . . . . . 10
⊢ ((((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) ∧ (𝑢 ∈ N ∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ((𝑦 ∈ N ∧ 𝑧 ∈ N) ∧
(𝑢 ∈ N
∧ (𝑧
·N 𝑣) ∈ N))) | 
| 30 |   | addpipqqs 7437 | 
. . . . . . . . . 10
⊢ (((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑢 ∈
N ∧ (𝑧
·N 𝑣) ∈ N)) →
([〈𝑦, 𝑧〉]
~Q +Q [〈𝑢, (𝑧 ·N 𝑣)〉]
~Q ) = [〈((𝑦 ·N (𝑧
·N 𝑣)) +N (𝑧
·N 𝑢)), (𝑧 ·N (𝑧
·N 𝑣))〉] ~Q
) | 
| 31 | 29, 30 | syl 14 | 
. . . . . . . . 9
⊢ ((((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) ∧ (𝑢 ∈ N ∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ([〈𝑦, 𝑧〉] ~Q
+Q [〈𝑢, (𝑧 ·N 𝑣)〉]
~Q ) = [〈((𝑦 ·N (𝑧
·N 𝑣)) +N (𝑧
·N 𝑢)), (𝑧 ·N (𝑧
·N 𝑣))〉] ~Q
) | 
| 32 |   | simplll 533 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) ∧ (𝑢 ∈ N ∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → 𝑦 ∈ N) | 
| 33 |   | simpllr 534 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) ∧ (𝑢 ∈ N ∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → 𝑧 ∈ N) | 
| 34 |   | simplrr 536 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) ∧ (𝑢 ∈ N ∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → 𝑣 ∈ N) | 
| 35 |   | mulcompig 7398 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ N ∧
𝑔 ∈ N)
→ (𝑓
·N 𝑔) = (𝑔 ·N 𝑓)) | 
| 36 | 35 | adantl 277 | 
. . . . . . . . . . . . . . 15
⊢
(((((𝑦 ∈
N ∧ 𝑧
∈ N) ∧ (𝑤 ∈ N ∧ 𝑣 ∈ N)) ∧
(𝑢 ∈ N
∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) ∧ (𝑓 ∈ N ∧ 𝑔 ∈ N)) →
(𝑓
·N 𝑔) = (𝑔 ·N 𝑓)) | 
| 37 |   | mulasspig 7399 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ N ∧
𝑔 ∈ N
∧ ℎ ∈
N) → ((𝑓
·N 𝑔) ·N ℎ) = (𝑓 ·N (𝑔
·N ℎ))) | 
| 38 | 37 | adantl 277 | 
. . . . . . . . . . . . . . 15
⊢
(((((𝑦 ∈
N ∧ 𝑧
∈ N) ∧ (𝑤 ∈ N ∧ 𝑣 ∈ N)) ∧
(𝑢 ∈ N
∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) ∧ (𝑓 ∈ N ∧ 𝑔 ∈ N ∧
ℎ ∈ N))
→ ((𝑓
·N 𝑔) ·N ℎ) = (𝑓 ·N (𝑔
·N ℎ))) | 
| 39 | 32, 33, 34, 36, 38 | caov12d 6105 | 
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) ∧ (𝑢 ∈ N ∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → (𝑦 ·N (𝑧
·N 𝑣)) = (𝑧 ·N (𝑦
·N 𝑣))) | 
| 40 | 39 | oveq1d 5937 | 
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) ∧ (𝑢 ∈ N ∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ((𝑦 ·N (𝑧
·N 𝑣)) +N (𝑧
·N 𝑢)) = ((𝑧 ·N (𝑦
·N 𝑣)) +N (𝑧
·N 𝑢))) | 
| 41 | 32, 34, 12 | syl2anc 411 | 
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) ∧ (𝑢 ∈ N ∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → (𝑦 ·N 𝑣) ∈
N) | 
| 42 |   | simprl 529 | 
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) ∧ (𝑢 ∈ N ∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → 𝑢 ∈ N) | 
| 43 |   | distrpig 7400 | 
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ N ∧
(𝑦
·N 𝑣) ∈ N ∧ 𝑢 ∈ N) →
(𝑧
·N ((𝑦 ·N 𝑣) +N
𝑢)) = ((𝑧 ·N (𝑦
·N 𝑣)) +N (𝑧
·N 𝑢))) | 
| 44 | 33, 41, 42, 43 | syl3anc 1249 | 
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) ∧ (𝑢 ∈ N ∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → (𝑧 ·N ((𝑦
·N 𝑣) +N 𝑢)) = ((𝑧 ·N (𝑦
·N 𝑣)) +N (𝑧
·N 𝑢))) | 
| 45 | 40, 44 | eqtr4d 2232 | 
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) ∧ (𝑢 ∈ N ∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ((𝑦 ·N (𝑧
·N 𝑣)) +N (𝑧
·N 𝑢)) = (𝑧 ·N ((𝑦
·N 𝑣) +N 𝑢))) | 
| 46 | 45 | opeq1d 3814 | 
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) ∧ (𝑢 ∈ N ∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → 〈((𝑦
·N (𝑧 ·N 𝑣)) +N
(𝑧
·N 𝑢)), (𝑧 ·N (𝑧
·N 𝑣))〉 = 〈(𝑧 ·N ((𝑦
·N 𝑣) +N 𝑢)), (𝑧 ·N (𝑧
·N 𝑣))〉) | 
| 47 | 46 | eceq1d 6628 | 
. . . . . . . . . 10
⊢ ((((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) ∧ (𝑢 ∈ N ∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → [〈((𝑦
·N (𝑧 ·N 𝑣)) +N
(𝑧
·N 𝑢)), (𝑧 ·N (𝑧
·N 𝑣))〉] ~Q =
[〈(𝑧
·N ((𝑦 ·N 𝑣) +N
𝑢)), (𝑧 ·N (𝑧
·N 𝑣))〉] ~Q
) | 
| 48 |   | simpllr 534 | 
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) ∧ 𝑢 ∈ N) → 𝑧 ∈
N) | 
| 49 | 12 | ad2ant2rl 511 | 
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) → (𝑦 ·N 𝑣) ∈
N) | 
| 50 |   | addclpi 7394 | 
. . . . . . . . . . . . . 14
⊢ (((𝑦
·N 𝑣) ∈ N ∧ 𝑢 ∈ N) →
((𝑦
·N 𝑣) +N 𝑢) ∈
N) | 
| 51 | 49, 50 | sylan 283 | 
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) ∧ 𝑢 ∈ N) → ((𝑦
·N 𝑣) +N 𝑢) ∈
N) | 
| 52 | 48, 51, 27 | 3jca 1179 | 
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) ∧ 𝑢 ∈ N) → (𝑧 ∈ N ∧
((𝑦
·N 𝑣) +N 𝑢) ∈ N ∧
(𝑧
·N 𝑣) ∈ N)) | 
| 53 | 52 | adantrr 479 | 
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) ∧ (𝑢 ∈ N ∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → (𝑧 ∈ N ∧ ((𝑦
·N 𝑣) +N 𝑢) ∈ N ∧
(𝑧
·N 𝑣) ∈ N)) | 
| 54 |   | mulcanenqec 7453 | 
. . . . . . . . . . 11
⊢ ((𝑧 ∈ N ∧
((𝑦
·N 𝑣) +N 𝑢) ∈ N ∧
(𝑧
·N 𝑣) ∈ N) →
[〈(𝑧
·N ((𝑦 ·N 𝑣) +N
𝑢)), (𝑧 ·N (𝑧
·N 𝑣))〉] ~Q =
[〈((𝑦
·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)〉]
~Q ) | 
| 55 | 53, 54 | syl 14 | 
. . . . . . . . . 10
⊢ ((((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) ∧ (𝑢 ∈ N ∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → [〈(𝑧
·N ((𝑦 ·N 𝑣) +N
𝑢)), (𝑧 ·N (𝑧
·N 𝑣))〉] ~Q =
[〈((𝑦
·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)〉]
~Q ) | 
| 56 | 47, 55 | eqtrd 2229 | 
. . . . . . . . 9
⊢ ((((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) ∧ (𝑢 ∈ N ∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → [〈((𝑦
·N (𝑧 ·N 𝑣)) +N
(𝑧
·N 𝑢)), (𝑧 ·N (𝑧
·N 𝑣))〉] ~Q =
[〈((𝑦
·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)〉]
~Q ) | 
| 57 |   | 3anass 984 | 
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N
∧ 𝑣 ∈
N) ↔ (𝑧
∈ N ∧ (𝑤 ∈ N ∧ 𝑣 ∈
N))) | 
| 58 | 57 | biimpri 133 | 
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ N ∧
(𝑤 ∈ N
∧ 𝑣 ∈
N)) → (𝑧
∈ N ∧ 𝑤 ∈ N ∧ 𝑣 ∈
N)) | 
| 59 | 58 | adantll 476 | 
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) → (𝑧 ∈ N ∧ 𝑤 ∈ N ∧
𝑣 ∈
N)) | 
| 60 | 59 | anim1i 340 | 
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) ∧ ((𝑦 ·N 𝑣) +N
𝑢) = (𝑧 ·N 𝑤)) → ((𝑧 ∈ N ∧ 𝑤 ∈ N ∧
𝑣 ∈ N)
∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) | 
| 61 | 60 | adantrl 478 | 
. . . . . . . . . 10
⊢ ((((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) ∧ (𝑢 ∈ N ∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ((𝑧 ∈ N ∧ 𝑤 ∈ N ∧
𝑣 ∈ N)
∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) | 
| 62 |   | opeq1 3808 | 
. . . . . . . . . . . 12
⊢ (((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤) → 〈((𝑦
·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)〉 = 〈(𝑧
·N 𝑤), (𝑧 ·N 𝑣)〉) | 
| 63 | 62 | eceq1d 6628 | 
. . . . . . . . . . 11
⊢ (((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤) → [〈((𝑦
·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)〉]
~Q = [〈(𝑧 ·N 𝑤), (𝑧 ·N 𝑣)〉]
~Q ) | 
| 64 |   | mulcanenqec 7453 | 
. . . . . . . . . . 11
⊢ ((𝑧 ∈ N ∧
𝑤 ∈ N
∧ 𝑣 ∈
N) → [〈(𝑧 ·N 𝑤), (𝑧 ·N 𝑣)〉]
~Q = [〈𝑤, 𝑣〉] ~Q
) | 
| 65 | 63, 64 | sylan9eqr 2251 | 
. . . . . . . . . 10
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N
∧ 𝑣 ∈
N) ∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)) → [〈((𝑦
·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)〉]
~Q = [〈𝑤, 𝑣〉] ~Q
) | 
| 66 | 61, 65 | syl 14 | 
. . . . . . . . 9
⊢ ((((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) ∧ (𝑢 ∈ N ∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → [〈((𝑦
·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)〉]
~Q = [〈𝑤, 𝑣〉] ~Q
) | 
| 67 | 31, 56, 66 | 3eqtrd 2233 | 
. . . . . . . 8
⊢ ((((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) ∧ (𝑢 ∈ N ∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ([〈𝑦, 𝑧〉] ~Q
+Q [〈𝑢, (𝑧 ·N 𝑣)〉]
~Q ) = [〈𝑤, 𝑣〉] ~Q
) | 
| 68 | 33, 34, 26 | syl2anc 411 | 
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) ∧ (𝑢 ∈ N ∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → (𝑧 ·N 𝑣) ∈
N) | 
| 69 |   | opelxpi 4695 | 
. . . . . . . . . . . 12
⊢ ((𝑢 ∈ N ∧
(𝑧
·N 𝑣) ∈ N) → 〈𝑢, (𝑧 ·N 𝑣)〉 ∈ (N
× N)) | 
| 70 |   | enqex 7427 | 
. . . . . . . . . . . . 13
⊢ 
~Q ∈ V | 
| 71 | 70 | ecelqsi 6648 | 
. . . . . . . . . . . 12
⊢
(〈𝑢, (𝑧
·N 𝑣)〉 ∈ (N ×
N) → [〈𝑢, (𝑧 ·N 𝑣)〉]
~Q ∈ ((N × N)
/ ~Q )) | 
| 72 | 69, 71 | syl 14 | 
. . . . . . . . . . 11
⊢ ((𝑢 ∈ N ∧
(𝑧
·N 𝑣) ∈ N) → [〈𝑢, (𝑧 ·N 𝑣)〉]
~Q ∈ ((N × N)
/ ~Q )) | 
| 73 | 42, 68, 72 | syl2anc 411 | 
. . . . . . . . . 10
⊢ ((((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) ∧ (𝑢 ∈ N ∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → [〈𝑢, (𝑧 ·N 𝑣)〉]
~Q ∈ ((N × N)
/ ~Q )) | 
| 74 | 73, 1 | eleqtrrdi 2290 | 
. . . . . . . . 9
⊢ ((((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) ∧ (𝑢 ∈ N ∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → [〈𝑢, (𝑧 ·N 𝑣)〉]
~Q ∈ Q) | 
| 75 |   | oveq2 5930 | 
. . . . . . . . . . 11
⊢ (𝑥 = [〈𝑢, (𝑧 ·N 𝑣)〉]
~Q → ([〈𝑦, 𝑧〉] ~Q
+Q 𝑥) = ([〈𝑦, 𝑧〉] ~Q
+Q [〈𝑢, (𝑧 ·N 𝑣)〉]
~Q )) | 
| 76 | 75 | eqeq1d 2205 | 
. . . . . . . . . 10
⊢ (𝑥 = [〈𝑢, (𝑧 ·N 𝑣)〉]
~Q → (([〈𝑦, 𝑧〉] ~Q
+Q 𝑥) = [〈𝑤, 𝑣〉] ~Q ↔
([〈𝑦, 𝑧〉]
~Q +Q [〈𝑢, (𝑧 ·N 𝑣)〉]
~Q ) = [〈𝑤, 𝑣〉] ~Q
)) | 
| 77 | 76 | adantl 277 | 
. . . . . . . . 9
⊢
(((((𝑦 ∈
N ∧ 𝑧
∈ N) ∧ (𝑤 ∈ N ∧ 𝑣 ∈ N)) ∧
(𝑢 ∈ N
∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) ∧ 𝑥 = [〈𝑢, (𝑧 ·N 𝑣)〉]
~Q ) → (([〈𝑦, 𝑧〉] ~Q
+Q 𝑥) = [〈𝑤, 𝑣〉] ~Q ↔
([〈𝑦, 𝑧〉]
~Q +Q [〈𝑢, (𝑧 ·N 𝑣)〉]
~Q ) = [〈𝑤, 𝑣〉] ~Q
)) | 
| 78 | 74, 77 | rspcedv 2872 | 
. . . . . . . 8
⊢ ((((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) ∧ (𝑢 ∈ N ∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → (([〈𝑦, 𝑧〉] ~Q
+Q [〈𝑢, (𝑧 ·N 𝑣)〉]
~Q ) = [〈𝑤, 𝑣〉] ~Q →
∃𝑥 ∈
Q ([〈𝑦,
𝑧〉]
~Q +Q 𝑥) = [〈𝑤, 𝑣〉] ~Q
)) | 
| 79 | 67, 78 | mpd 13 | 
. . . . . . 7
⊢ ((((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) ∧ (𝑢 ∈ N ∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ∃𝑥 ∈ Q
([〈𝑦, 𝑧〉]
~Q +Q 𝑥) = [〈𝑤, 𝑣〉] ~Q
) | 
| 80 | 79 | ex 115 | 
. . . . . 6
⊢ (((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) → ((𝑢 ∈ N ∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)) → ∃𝑥 ∈ Q
([〈𝑦, 𝑧〉]
~Q +Q 𝑥) = [〈𝑤, 𝑣〉] ~Q
)) | 
| 81 | 80 | exlimdv 1833 | 
. . . . 5
⊢ (((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) → (∃𝑢(𝑢 ∈ N ∧ ((𝑦
·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)) → ∃𝑥 ∈ Q
([〈𝑦, 𝑧〉]
~Q +Q 𝑥) = [〈𝑤, 𝑣〉] ~Q
)) | 
| 82 | 19, 81 | sylbid 150 | 
. . . 4
⊢ (((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) → ((𝑦 ·N 𝑣) <N
(𝑧
·N 𝑤) → ∃𝑥 ∈ Q ([〈𝑦, 𝑧〉] ~Q
+Q 𝑥) = [〈𝑤, 𝑣〉] ~Q
)) | 
| 83 | 11, 82 | sylbid 150 | 
. . 3
⊢ (((𝑦 ∈ N ∧
𝑧 ∈ N)
∧ (𝑤 ∈
N ∧ 𝑣
∈ N)) → ([〈𝑦, 𝑧〉] ~Q
<Q [〈𝑤, 𝑣〉] ~Q →
∃𝑥 ∈
Q ([〈𝑦,
𝑧〉]
~Q +Q 𝑥) = [〈𝑤, 𝑣〉] ~Q
)) | 
| 84 | 1, 6, 10, 83 | 2ecoptocl 6682 | 
. 2
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (𝐴
<Q 𝐵 → ∃𝑥 ∈ Q (𝐴 +Q 𝑥) = 𝐵)) | 
| 85 |   | ltaddnq 7474 | 
. . . . 5
⊢ ((𝐴 ∈ Q ∧
𝑥 ∈ Q)
→ 𝐴
<Q (𝐴 +Q 𝑥)) | 
| 86 |   | breq2 4037 | 
. . . . 5
⊢ ((𝐴 +Q
𝑥) = 𝐵 → (𝐴 <Q (𝐴 +Q
𝑥) ↔ 𝐴 <Q 𝐵)) | 
| 87 | 85, 86 | syl5ibcom 155 | 
. . . 4
⊢ ((𝐴 ∈ Q ∧
𝑥 ∈ Q)
→ ((𝐴
+Q 𝑥) = 𝐵 → 𝐴 <Q 𝐵)) | 
| 88 | 87 | rexlimdva 2614 | 
. . 3
⊢ (𝐴 ∈ Q →
(∃𝑥 ∈
Q (𝐴
+Q 𝑥) = 𝐵 → 𝐴 <Q 𝐵)) | 
| 89 | 88 | adantr 276 | 
. 2
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (∃𝑥 ∈
Q (𝐴
+Q 𝑥) = 𝐵 → 𝐴 <Q 𝐵)) | 
| 90 | 84, 89 | impbid 129 | 
1
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (𝐴
<Q 𝐵 ↔ ∃𝑥 ∈ Q (𝐴 +Q 𝑥) = 𝐵)) |