ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexnqq GIF version

Theorem ltexnqq 7591
Description: Ordering on positive fractions in terms of existence of sum. Definition in Proposition 9-2.6 of [Gleason] p. 119. (Contributed by Jim Kingdon, 23-Sep-2019.)
Assertion
Ref Expression
ltexnqq ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ltexnqq
Dummy variables 𝑓 𝑔 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7531 . . 3 Q = ((N × N) / ~Q )
2 breq1 4085 . . . 4 ([⟨𝑦, 𝑧⟩] ~Q = 𝐴 → ([⟨𝑦, 𝑧⟩] ~Q <Q [⟨𝑤, 𝑣⟩] ~Q𝐴 <Q [⟨𝑤, 𝑣⟩] ~Q ))
3 oveq1 6007 . . . . . 6 ([⟨𝑦, 𝑧⟩] ~Q = 𝐴 → ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = (𝐴 +Q 𝑥))
43eqeq1d 2238 . . . . 5 ([⟨𝑦, 𝑧⟩] ~Q = 𝐴 → (([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ↔ (𝐴 +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ))
54rexbidv 2531 . . . 4 ([⟨𝑦, 𝑧⟩] ~Q = 𝐴 → (∃𝑥Q ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ↔ ∃𝑥Q (𝐴 +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ))
62, 5imbi12d 234 . . 3 ([⟨𝑦, 𝑧⟩] ~Q = 𝐴 → (([⟨𝑦, 𝑧⟩] ~Q <Q [⟨𝑤, 𝑣⟩] ~Q → ∃𝑥Q ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ) ↔ (𝐴 <Q [⟨𝑤, 𝑣⟩] ~Q → ∃𝑥Q (𝐴 +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q )))
7 breq2 4086 . . . 4 ([⟨𝑤, 𝑣⟩] ~Q = 𝐵 → (𝐴 <Q [⟨𝑤, 𝑣⟩] ~Q𝐴 <Q 𝐵))
8 eqeq2 2239 . . . . 5 ([⟨𝑤, 𝑣⟩] ~Q = 𝐵 → ((𝐴 +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ↔ (𝐴 +Q 𝑥) = 𝐵))
98rexbidv 2531 . . . 4 ([⟨𝑤, 𝑣⟩] ~Q = 𝐵 → (∃𝑥Q (𝐴 +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ↔ ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵))
107, 9imbi12d 234 . . 3 ([⟨𝑤, 𝑣⟩] ~Q = 𝐵 → ((𝐴 <Q [⟨𝑤, 𝑣⟩] ~Q → ∃𝑥Q (𝐴 +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ) ↔ (𝐴 <Q 𝐵 → ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵)))
11 ordpipqqs 7557 . . . 4 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → ([⟨𝑦, 𝑧⟩] ~Q <Q [⟨𝑤, 𝑣⟩] ~Q ↔ (𝑦 ·N 𝑣) <N (𝑧 ·N 𝑤)))
12 mulclpi 7511 . . . . . . . . 9 ((𝑦N𝑣N) → (𝑦 ·N 𝑣) ∈ N)
13 mulclpi 7511 . . . . . . . . 9 ((𝑧N𝑤N) → (𝑧 ·N 𝑤) ∈ N)
1412, 13anim12i 338 . . . . . . . 8 (((𝑦N𝑣N) ∧ (𝑧N𝑤N)) → ((𝑦 ·N 𝑣) ∈ N ∧ (𝑧 ·N 𝑤) ∈ N))
1514an42s 591 . . . . . . 7 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑣) ∈ N ∧ (𝑧 ·N 𝑤) ∈ N))
16 ltexpi 7520 . . . . . . 7 (((𝑦 ·N 𝑣) ∈ N ∧ (𝑧 ·N 𝑤) ∈ N) → ((𝑦 ·N 𝑣) <N (𝑧 ·N 𝑤) ↔ ∃𝑢N ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)))
1715, 16syl 14 . . . . . 6 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑣) <N (𝑧 ·N 𝑤) ↔ ∃𝑢N ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)))
18 df-rex 2514 . . . . . 6 (∃𝑢N ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤) ↔ ∃𝑢(𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)))
1917, 18bitrdi 196 . . . . 5 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑣) <N (𝑧 ·N 𝑤) ↔ ∃𝑢(𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))))
20 simpll 527 . . . . . . . . . . . 12 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ 𝑢N) → (𝑦N𝑧N))
21 simpr 110 . . . . . . . . . . . 12 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ 𝑢N) → 𝑢N)
22 simpr 110 . . . . . . . . . . . . . . 15 ((𝑦N𝑧N) → 𝑧N)
23 simpr 110 . . . . . . . . . . . . . . 15 ((𝑤N𝑣N) → 𝑣N)
2422, 23anim12i 338 . . . . . . . . . . . . . 14 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → (𝑧N𝑣N))
2524adantr 276 . . . . . . . . . . . . 13 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ 𝑢N) → (𝑧N𝑣N))
26 mulclpi 7511 . . . . . . . . . . . . 13 ((𝑧N𝑣N) → (𝑧 ·N 𝑣) ∈ N)
2725, 26syl 14 . . . . . . . . . . . 12 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ 𝑢N) → (𝑧 ·N 𝑣) ∈ N)
2820, 21, 27jca32 310 . . . . . . . . . . 11 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ 𝑢N) → ((𝑦N𝑧N) ∧ (𝑢N ∧ (𝑧 ·N 𝑣) ∈ N)))
2928adantrr 479 . . . . . . . . . 10 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ((𝑦N𝑧N) ∧ (𝑢N ∧ (𝑧 ·N 𝑣) ∈ N)))
30 addpipqqs 7553 . . . . . . . . . 10 (((𝑦N𝑧N) ∧ (𝑢N ∧ (𝑧 ·N 𝑣) ∈ N)) → ([⟨𝑦, 𝑧⟩] ~Q +Q [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ) = [⟨((𝑦 ·N (𝑧 ·N 𝑣)) +N (𝑧 ·N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩] ~Q )
3129, 30syl 14 . . . . . . . . 9 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ([⟨𝑦, 𝑧⟩] ~Q +Q [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ) = [⟨((𝑦 ·N (𝑧 ·N 𝑣)) +N (𝑧 ·N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩] ~Q )
32 simplll 533 . . . . . . . . . . . . . . 15 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → 𝑦N)
33 simpllr 534 . . . . . . . . . . . . . . 15 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → 𝑧N)
34 simplrr 536 . . . . . . . . . . . . . . 15 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → 𝑣N)
35 mulcompig 7514 . . . . . . . . . . . . . . . 16 ((𝑓N𝑔N) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
3635adantl 277 . . . . . . . . . . . . . . 15 (((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
37 mulasspig 7515 . . . . . . . . . . . . . . . 16 ((𝑓N𝑔NN) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
3837adantl 277 . . . . . . . . . . . . . . 15 (((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) ∧ (𝑓N𝑔NN)) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
3932, 33, 34, 36, 38caov12d 6186 . . . . . . . . . . . . . 14 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → (𝑦 ·N (𝑧 ·N 𝑣)) = (𝑧 ·N (𝑦 ·N 𝑣)))
4039oveq1d 6015 . . . . . . . . . . . . 13 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ((𝑦 ·N (𝑧 ·N 𝑣)) +N (𝑧 ·N 𝑢)) = ((𝑧 ·N (𝑦 ·N 𝑣)) +N (𝑧 ·N 𝑢)))
4132, 34, 12syl2anc 411 . . . . . . . . . . . . . 14 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → (𝑦 ·N 𝑣) ∈ N)
42 simprl 529 . . . . . . . . . . . . . 14 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → 𝑢N)
43 distrpig 7516 . . . . . . . . . . . . . 14 ((𝑧N ∧ (𝑦 ·N 𝑣) ∈ N𝑢N) → (𝑧 ·N ((𝑦 ·N 𝑣) +N 𝑢)) = ((𝑧 ·N (𝑦 ·N 𝑣)) +N (𝑧 ·N 𝑢)))
4433, 41, 42, 43syl3anc 1271 . . . . . . . . . . . . 13 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → (𝑧 ·N ((𝑦 ·N 𝑣) +N 𝑢)) = ((𝑧 ·N (𝑦 ·N 𝑣)) +N (𝑧 ·N 𝑢)))
4540, 44eqtr4d 2265 . . . . . . . . . . . 12 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ((𝑦 ·N (𝑧 ·N 𝑣)) +N (𝑧 ·N 𝑢)) = (𝑧 ·N ((𝑦 ·N 𝑣) +N 𝑢)))
4645opeq1d 3862 . . . . . . . . . . 11 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ⟨((𝑦 ·N (𝑧 ·N 𝑣)) +N (𝑧 ·N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩ = ⟨(𝑧 ·N ((𝑦 ·N 𝑣) +N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩)
4746eceq1d 6714 . . . . . . . . . 10 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → [⟨((𝑦 ·N (𝑧 ·N 𝑣)) +N (𝑧 ·N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩] ~Q = [⟨(𝑧 ·N ((𝑦 ·N 𝑣) +N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩] ~Q )
48 simpllr 534 . . . . . . . . . . . . 13 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ 𝑢N) → 𝑧N)
4912ad2ant2rl 511 . . . . . . . . . . . . . 14 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → (𝑦 ·N 𝑣) ∈ N)
50 addclpi 7510 . . . . . . . . . . . . . 14 (((𝑦 ·N 𝑣) ∈ N𝑢N) → ((𝑦 ·N 𝑣) +N 𝑢) ∈ N)
5149, 50sylan 283 . . . . . . . . . . . . 13 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ 𝑢N) → ((𝑦 ·N 𝑣) +N 𝑢) ∈ N)
5248, 51, 273jca 1201 . . . . . . . . . . . 12 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ 𝑢N) → (𝑧N ∧ ((𝑦 ·N 𝑣) +N 𝑢) ∈ N ∧ (𝑧 ·N 𝑣) ∈ N))
5352adantrr 479 . . . . . . . . . . 11 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → (𝑧N ∧ ((𝑦 ·N 𝑣) +N 𝑢) ∈ N ∧ (𝑧 ·N 𝑣) ∈ N))
54 mulcanenqec 7569 . . . . . . . . . . 11 ((𝑧N ∧ ((𝑦 ·N 𝑣) +N 𝑢) ∈ N ∧ (𝑧 ·N 𝑣) ∈ N) → [⟨(𝑧 ·N ((𝑦 ·N 𝑣) +N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩] ~Q = [⟨((𝑦 ·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)⟩] ~Q )
5553, 54syl 14 . . . . . . . . . 10 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → [⟨(𝑧 ·N ((𝑦 ·N 𝑣) +N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩] ~Q = [⟨((𝑦 ·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)⟩] ~Q )
5647, 55eqtrd 2262 . . . . . . . . 9 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → [⟨((𝑦 ·N (𝑧 ·N 𝑣)) +N (𝑧 ·N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩] ~Q = [⟨((𝑦 ·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)⟩] ~Q )
57 3anass 1006 . . . . . . . . . . . . . 14 ((𝑧N𝑤N𝑣N) ↔ (𝑧N ∧ (𝑤N𝑣N)))
5857biimpri 133 . . . . . . . . . . . . 13 ((𝑧N ∧ (𝑤N𝑣N)) → (𝑧N𝑤N𝑣N))
5958adantll 476 . . . . . . . . . . . 12 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → (𝑧N𝑤N𝑣N))
6059anim1i 340 . . . . . . . . . . 11 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)) → ((𝑧N𝑤N𝑣N) ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)))
6160adantrl 478 . . . . . . . . . 10 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ((𝑧N𝑤N𝑣N) ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)))
62 opeq1 3856 . . . . . . . . . . . 12 (((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤) → ⟨((𝑦 ·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)⟩ = ⟨(𝑧 ·N 𝑤), (𝑧 ·N 𝑣)⟩)
6362eceq1d 6714 . . . . . . . . . . 11 (((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤) → [⟨((𝑦 ·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)⟩] ~Q = [⟨(𝑧 ·N 𝑤), (𝑧 ·N 𝑣)⟩] ~Q )
64 mulcanenqec 7569 . . . . . . . . . . 11 ((𝑧N𝑤N𝑣N) → [⟨(𝑧 ·N 𝑤), (𝑧 ·N 𝑣)⟩] ~Q = [⟨𝑤, 𝑣⟩] ~Q )
6563, 64sylan9eqr 2284 . . . . . . . . . 10 (((𝑧N𝑤N𝑣N) ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)) → [⟨((𝑦 ·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)⟩] ~Q = [⟨𝑤, 𝑣⟩] ~Q )
6661, 65syl 14 . . . . . . . . 9 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → [⟨((𝑦 ·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)⟩] ~Q = [⟨𝑤, 𝑣⟩] ~Q )
6731, 56, 663eqtrd 2266 . . . . . . . 8 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ([⟨𝑦, 𝑧⟩] ~Q +Q [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ) = [⟨𝑤, 𝑣⟩] ~Q )
6833, 34, 26syl2anc 411 . . . . . . . . . . 11 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → (𝑧 ·N 𝑣) ∈ N)
69 opelxpi 4750 . . . . . . . . . . . 12 ((𝑢N ∧ (𝑧 ·N 𝑣) ∈ N) → ⟨𝑢, (𝑧 ·N 𝑣)⟩ ∈ (N × N))
70 enqex 7543 . . . . . . . . . . . . 13 ~Q ∈ V
7170ecelqsi 6734 . . . . . . . . . . . 12 (⟨𝑢, (𝑧 ·N 𝑣)⟩ ∈ (N × N) → [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ∈ ((N × N) / ~Q ))
7269, 71syl 14 . . . . . . . . . . 11 ((𝑢N ∧ (𝑧 ·N 𝑣) ∈ N) → [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ∈ ((N × N) / ~Q ))
7342, 68, 72syl2anc 411 . . . . . . . . . 10 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ∈ ((N × N) / ~Q ))
7473, 1eleqtrrdi 2323 . . . . . . . . 9 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~QQ)
75 oveq2 6008 . . . . . . . . . . 11 (𝑥 = [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q → ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = ([⟨𝑦, 𝑧⟩] ~Q +Q [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ))
7675eqeq1d 2238 . . . . . . . . . 10 (𝑥 = [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q → (([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ↔ ([⟨𝑦, 𝑧⟩] ~Q +Q [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ) = [⟨𝑤, 𝑣⟩] ~Q ))
7776adantl 277 . . . . . . . . 9 (((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) ∧ 𝑥 = [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ) → (([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ↔ ([⟨𝑦, 𝑧⟩] ~Q +Q [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ) = [⟨𝑤, 𝑣⟩] ~Q ))
7874, 77rspcedv 2911 . . . . . . . 8 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → (([⟨𝑦, 𝑧⟩] ~Q +Q [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ) = [⟨𝑤, 𝑣⟩] ~Q → ∃𝑥Q ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ))
7967, 78mpd 13 . . . . . . 7 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ∃𝑥Q ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q )
8079ex 115 . . . . . 6 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → ((𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)) → ∃𝑥Q ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ))
8180exlimdv 1865 . . . . 5 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → (∃𝑢(𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)) → ∃𝑥Q ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ))
8219, 81sylbid 150 . . . 4 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑣) <N (𝑧 ·N 𝑤) → ∃𝑥Q ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ))
8311, 82sylbid 150 . . 3 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → ([⟨𝑦, 𝑧⟩] ~Q <Q [⟨𝑤, 𝑣⟩] ~Q → ∃𝑥Q ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ))
841, 6, 10, 832ecoptocl 6768 . 2 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 → ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵))
85 ltaddnq 7590 . . . . 5 ((𝐴Q𝑥Q) → 𝐴 <Q (𝐴 +Q 𝑥))
86 breq2 4086 . . . . 5 ((𝐴 +Q 𝑥) = 𝐵 → (𝐴 <Q (𝐴 +Q 𝑥) ↔ 𝐴 <Q 𝐵))
8785, 86syl5ibcom 155 . . . 4 ((𝐴Q𝑥Q) → ((𝐴 +Q 𝑥) = 𝐵𝐴 <Q 𝐵))
8887rexlimdva 2648 . . 3 (𝐴Q → (∃𝑥Q (𝐴 +Q 𝑥) = 𝐵𝐴 <Q 𝐵))
8988adantr 276 . 2 ((𝐴Q𝐵Q) → (∃𝑥Q (𝐴 +Q 𝑥) = 𝐵𝐴 <Q 𝐵))
9084, 89impbid 129 1 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wex 1538  wcel 2200  wrex 2509  cop 3669   class class class wbr 4082   × cxp 4716  (class class class)co 6000  [cec 6676   / cqs 6677  Ncnpi 7455   +N cpli 7456   ·N cmi 7457   <N clti 7458   ~Q ceq 7462  Qcnq 7463   +Q cplq 7465   <Q cltq 7468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4379  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-1o 6560  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-pli 7488  df-mi 7489  df-lti 7490  df-plpq 7527  df-mpq 7528  df-enq 7530  df-nqqs 7531  df-plqqs 7532  df-mqqs 7533  df-1nqqs 7534  df-ltnqqs 7536
This theorem is referenced by:  ltexnqi  7592  addlocpr  7719  ltexprlemopl  7784  ltexprlemopu  7786  ltexprlemrl  7793  ltexprlemru  7795  cauappcvgprlemopl  7829  caucvgprlemopl  7852  caucvgprprlemopl  7880
  Copyright terms: Public domain W3C validator