ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexnqq GIF version

Theorem ltexnqq 7223
Description: Ordering on positive fractions in terms of existence of sum. Definition in Proposition 9-2.6 of [Gleason] p. 119. (Contributed by Jim Kingdon, 23-Sep-2019.)
Assertion
Ref Expression
ltexnqq ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ltexnqq
Dummy variables 𝑓 𝑔 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7163 . . 3 Q = ((N × N) / ~Q )
2 breq1 3932 . . . 4 ([⟨𝑦, 𝑧⟩] ~Q = 𝐴 → ([⟨𝑦, 𝑧⟩] ~Q <Q [⟨𝑤, 𝑣⟩] ~Q𝐴 <Q [⟨𝑤, 𝑣⟩] ~Q ))
3 oveq1 5781 . . . . . 6 ([⟨𝑦, 𝑧⟩] ~Q = 𝐴 → ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = (𝐴 +Q 𝑥))
43eqeq1d 2148 . . . . 5 ([⟨𝑦, 𝑧⟩] ~Q = 𝐴 → (([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ↔ (𝐴 +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ))
54rexbidv 2438 . . . 4 ([⟨𝑦, 𝑧⟩] ~Q = 𝐴 → (∃𝑥Q ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ↔ ∃𝑥Q (𝐴 +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ))
62, 5imbi12d 233 . . 3 ([⟨𝑦, 𝑧⟩] ~Q = 𝐴 → (([⟨𝑦, 𝑧⟩] ~Q <Q [⟨𝑤, 𝑣⟩] ~Q → ∃𝑥Q ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ) ↔ (𝐴 <Q [⟨𝑤, 𝑣⟩] ~Q → ∃𝑥Q (𝐴 +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q )))
7 breq2 3933 . . . 4 ([⟨𝑤, 𝑣⟩] ~Q = 𝐵 → (𝐴 <Q [⟨𝑤, 𝑣⟩] ~Q𝐴 <Q 𝐵))
8 eqeq2 2149 . . . . 5 ([⟨𝑤, 𝑣⟩] ~Q = 𝐵 → ((𝐴 +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ↔ (𝐴 +Q 𝑥) = 𝐵))
98rexbidv 2438 . . . 4 ([⟨𝑤, 𝑣⟩] ~Q = 𝐵 → (∃𝑥Q (𝐴 +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ↔ ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵))
107, 9imbi12d 233 . . 3 ([⟨𝑤, 𝑣⟩] ~Q = 𝐵 → ((𝐴 <Q [⟨𝑤, 𝑣⟩] ~Q → ∃𝑥Q (𝐴 +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ) ↔ (𝐴 <Q 𝐵 → ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵)))
11 ordpipqqs 7189 . . . 4 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → ([⟨𝑦, 𝑧⟩] ~Q <Q [⟨𝑤, 𝑣⟩] ~Q ↔ (𝑦 ·N 𝑣) <N (𝑧 ·N 𝑤)))
12 mulclpi 7143 . . . . . . . . 9 ((𝑦N𝑣N) → (𝑦 ·N 𝑣) ∈ N)
13 mulclpi 7143 . . . . . . . . 9 ((𝑧N𝑤N) → (𝑧 ·N 𝑤) ∈ N)
1412, 13anim12i 336 . . . . . . . 8 (((𝑦N𝑣N) ∧ (𝑧N𝑤N)) → ((𝑦 ·N 𝑣) ∈ N ∧ (𝑧 ·N 𝑤) ∈ N))
1514an42s 578 . . . . . . 7 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑣) ∈ N ∧ (𝑧 ·N 𝑤) ∈ N))
16 ltexpi 7152 . . . . . . 7 (((𝑦 ·N 𝑣) ∈ N ∧ (𝑧 ·N 𝑤) ∈ N) → ((𝑦 ·N 𝑣) <N (𝑧 ·N 𝑤) ↔ ∃𝑢N ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)))
1715, 16syl 14 . . . . . 6 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑣) <N (𝑧 ·N 𝑤) ↔ ∃𝑢N ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)))
18 df-rex 2422 . . . . . 6 (∃𝑢N ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤) ↔ ∃𝑢(𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)))
1917, 18syl6bb 195 . . . . 5 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑣) <N (𝑧 ·N 𝑤) ↔ ∃𝑢(𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))))
20 simpll 518 . . . . . . . . . . . 12 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ 𝑢N) → (𝑦N𝑧N))
21 simpr 109 . . . . . . . . . . . 12 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ 𝑢N) → 𝑢N)
22 simpr 109 . . . . . . . . . . . . . . 15 ((𝑦N𝑧N) → 𝑧N)
23 simpr 109 . . . . . . . . . . . . . . 15 ((𝑤N𝑣N) → 𝑣N)
2422, 23anim12i 336 . . . . . . . . . . . . . 14 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → (𝑧N𝑣N))
2524adantr 274 . . . . . . . . . . . . 13 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ 𝑢N) → (𝑧N𝑣N))
26 mulclpi 7143 . . . . . . . . . . . . 13 ((𝑧N𝑣N) → (𝑧 ·N 𝑣) ∈ N)
2725, 26syl 14 . . . . . . . . . . . 12 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ 𝑢N) → (𝑧 ·N 𝑣) ∈ N)
2820, 21, 27jca32 308 . . . . . . . . . . 11 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ 𝑢N) → ((𝑦N𝑧N) ∧ (𝑢N ∧ (𝑧 ·N 𝑣) ∈ N)))
2928adantrr 470 . . . . . . . . . 10 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ((𝑦N𝑧N) ∧ (𝑢N ∧ (𝑧 ·N 𝑣) ∈ N)))
30 addpipqqs 7185 . . . . . . . . . 10 (((𝑦N𝑧N) ∧ (𝑢N ∧ (𝑧 ·N 𝑣) ∈ N)) → ([⟨𝑦, 𝑧⟩] ~Q +Q [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ) = [⟨((𝑦 ·N (𝑧 ·N 𝑣)) +N (𝑧 ·N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩] ~Q )
3129, 30syl 14 . . . . . . . . 9 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ([⟨𝑦, 𝑧⟩] ~Q +Q [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ) = [⟨((𝑦 ·N (𝑧 ·N 𝑣)) +N (𝑧 ·N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩] ~Q )
32 simplll 522 . . . . . . . . . . . . . . 15 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → 𝑦N)
33 simpllr 523 . . . . . . . . . . . . . . 15 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → 𝑧N)
34 simplrr 525 . . . . . . . . . . . . . . 15 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → 𝑣N)
35 mulcompig 7146 . . . . . . . . . . . . . . . 16 ((𝑓N𝑔N) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
3635adantl 275 . . . . . . . . . . . . . . 15 (((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
37 mulasspig 7147 . . . . . . . . . . . . . . . 16 ((𝑓N𝑔NN) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
3837adantl 275 . . . . . . . . . . . . . . 15 (((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) ∧ (𝑓N𝑔NN)) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
3932, 33, 34, 36, 38caov12d 5952 . . . . . . . . . . . . . 14 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → (𝑦 ·N (𝑧 ·N 𝑣)) = (𝑧 ·N (𝑦 ·N 𝑣)))
4039oveq1d 5789 . . . . . . . . . . . . 13 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ((𝑦 ·N (𝑧 ·N 𝑣)) +N (𝑧 ·N 𝑢)) = ((𝑧 ·N (𝑦 ·N 𝑣)) +N (𝑧 ·N 𝑢)))
4132, 34, 12syl2anc 408 . . . . . . . . . . . . . 14 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → (𝑦 ·N 𝑣) ∈ N)
42 simprl 520 . . . . . . . . . . . . . 14 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → 𝑢N)
43 distrpig 7148 . . . . . . . . . . . . . 14 ((𝑧N ∧ (𝑦 ·N 𝑣) ∈ N𝑢N) → (𝑧 ·N ((𝑦 ·N 𝑣) +N 𝑢)) = ((𝑧 ·N (𝑦 ·N 𝑣)) +N (𝑧 ·N 𝑢)))
4433, 41, 42, 43syl3anc 1216 . . . . . . . . . . . . 13 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → (𝑧 ·N ((𝑦 ·N 𝑣) +N 𝑢)) = ((𝑧 ·N (𝑦 ·N 𝑣)) +N (𝑧 ·N 𝑢)))
4540, 44eqtr4d 2175 . . . . . . . . . . . 12 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ((𝑦 ·N (𝑧 ·N 𝑣)) +N (𝑧 ·N 𝑢)) = (𝑧 ·N ((𝑦 ·N 𝑣) +N 𝑢)))
4645opeq1d 3711 . . . . . . . . . . 11 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ⟨((𝑦 ·N (𝑧 ·N 𝑣)) +N (𝑧 ·N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩ = ⟨(𝑧 ·N ((𝑦 ·N 𝑣) +N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩)
4746eceq1d 6465 . . . . . . . . . 10 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → [⟨((𝑦 ·N (𝑧 ·N 𝑣)) +N (𝑧 ·N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩] ~Q = [⟨(𝑧 ·N ((𝑦 ·N 𝑣) +N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩] ~Q )
48 simpllr 523 . . . . . . . . . . . . 13 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ 𝑢N) → 𝑧N)
4912ad2ant2rl 502 . . . . . . . . . . . . . 14 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → (𝑦 ·N 𝑣) ∈ N)
50 addclpi 7142 . . . . . . . . . . . . . 14 (((𝑦 ·N 𝑣) ∈ N𝑢N) → ((𝑦 ·N 𝑣) +N 𝑢) ∈ N)
5149, 50sylan 281 . . . . . . . . . . . . 13 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ 𝑢N) → ((𝑦 ·N 𝑣) +N 𝑢) ∈ N)
5248, 51, 273jca 1161 . . . . . . . . . . . 12 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ 𝑢N) → (𝑧N ∧ ((𝑦 ·N 𝑣) +N 𝑢) ∈ N ∧ (𝑧 ·N 𝑣) ∈ N))
5352adantrr 470 . . . . . . . . . . 11 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → (𝑧N ∧ ((𝑦 ·N 𝑣) +N 𝑢) ∈ N ∧ (𝑧 ·N 𝑣) ∈ N))
54 mulcanenqec 7201 . . . . . . . . . . 11 ((𝑧N ∧ ((𝑦 ·N 𝑣) +N 𝑢) ∈ N ∧ (𝑧 ·N 𝑣) ∈ N) → [⟨(𝑧 ·N ((𝑦 ·N 𝑣) +N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩] ~Q = [⟨((𝑦 ·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)⟩] ~Q )
5553, 54syl 14 . . . . . . . . . 10 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → [⟨(𝑧 ·N ((𝑦 ·N 𝑣) +N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩] ~Q = [⟨((𝑦 ·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)⟩] ~Q )
5647, 55eqtrd 2172 . . . . . . . . 9 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → [⟨((𝑦 ·N (𝑧 ·N 𝑣)) +N (𝑧 ·N 𝑢)), (𝑧 ·N (𝑧 ·N 𝑣))⟩] ~Q = [⟨((𝑦 ·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)⟩] ~Q )
57 3anass 966 . . . . . . . . . . . . . 14 ((𝑧N𝑤N𝑣N) ↔ (𝑧N ∧ (𝑤N𝑣N)))
5857biimpri 132 . . . . . . . . . . . . 13 ((𝑧N ∧ (𝑤N𝑣N)) → (𝑧N𝑤N𝑣N))
5958adantll 467 . . . . . . . . . . . 12 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → (𝑧N𝑤N𝑣N))
6059anim1i 338 . . . . . . . . . . 11 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)) → ((𝑧N𝑤N𝑣N) ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)))
6160adantrl 469 . . . . . . . . . 10 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ((𝑧N𝑤N𝑣N) ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)))
62 opeq1 3705 . . . . . . . . . . . 12 (((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤) → ⟨((𝑦 ·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)⟩ = ⟨(𝑧 ·N 𝑤), (𝑧 ·N 𝑣)⟩)
6362eceq1d 6465 . . . . . . . . . . 11 (((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤) → [⟨((𝑦 ·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)⟩] ~Q = [⟨(𝑧 ·N 𝑤), (𝑧 ·N 𝑣)⟩] ~Q )
64 mulcanenqec 7201 . . . . . . . . . . 11 ((𝑧N𝑤N𝑣N) → [⟨(𝑧 ·N 𝑤), (𝑧 ·N 𝑣)⟩] ~Q = [⟨𝑤, 𝑣⟩] ~Q )
6563, 64sylan9eqr 2194 . . . . . . . . . 10 (((𝑧N𝑤N𝑣N) ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)) → [⟨((𝑦 ·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)⟩] ~Q = [⟨𝑤, 𝑣⟩] ~Q )
6661, 65syl 14 . . . . . . . . 9 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → [⟨((𝑦 ·N 𝑣) +N 𝑢), (𝑧 ·N 𝑣)⟩] ~Q = [⟨𝑤, 𝑣⟩] ~Q )
6731, 56, 663eqtrd 2176 . . . . . . . 8 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ([⟨𝑦, 𝑧⟩] ~Q +Q [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ) = [⟨𝑤, 𝑣⟩] ~Q )
6833, 34, 26syl2anc 408 . . . . . . . . . . 11 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → (𝑧 ·N 𝑣) ∈ N)
69 opelxpi 4571 . . . . . . . . . . . 12 ((𝑢N ∧ (𝑧 ·N 𝑣) ∈ N) → ⟨𝑢, (𝑧 ·N 𝑣)⟩ ∈ (N × N))
70 enqex 7175 . . . . . . . . . . . . 13 ~Q ∈ V
7170ecelqsi 6483 . . . . . . . . . . . 12 (⟨𝑢, (𝑧 ·N 𝑣)⟩ ∈ (N × N) → [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ∈ ((N × N) / ~Q ))
7269, 71syl 14 . . . . . . . . . . 11 ((𝑢N ∧ (𝑧 ·N 𝑣) ∈ N) → [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ∈ ((N × N) / ~Q ))
7342, 68, 72syl2anc 408 . . . . . . . . . 10 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ∈ ((N × N) / ~Q ))
7473, 1eleqtrrdi 2233 . . . . . . . . 9 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~QQ)
75 oveq2 5782 . . . . . . . . . . 11 (𝑥 = [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q → ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = ([⟨𝑦, 𝑧⟩] ~Q +Q [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ))
7675eqeq1d 2148 . . . . . . . . . 10 (𝑥 = [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q → (([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ↔ ([⟨𝑦, 𝑧⟩] ~Q +Q [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ) = [⟨𝑤, 𝑣⟩] ~Q ))
7776adantl 275 . . . . . . . . 9 (((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) ∧ 𝑥 = [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ) → (([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ↔ ([⟨𝑦, 𝑧⟩] ~Q +Q [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ) = [⟨𝑤, 𝑣⟩] ~Q ))
7874, 77rspcedv 2793 . . . . . . . 8 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → (([⟨𝑦, 𝑧⟩] ~Q +Q [⟨𝑢, (𝑧 ·N 𝑣)⟩] ~Q ) = [⟨𝑤, 𝑣⟩] ~Q → ∃𝑥Q ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ))
7967, 78mpd 13 . . . . . . 7 ((((𝑦N𝑧N) ∧ (𝑤N𝑣N)) ∧ (𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤))) → ∃𝑥Q ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q )
8079ex 114 . . . . . 6 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → ((𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)) → ∃𝑥Q ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ))
8180exlimdv 1791 . . . . 5 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → (∃𝑢(𝑢N ∧ ((𝑦 ·N 𝑣) +N 𝑢) = (𝑧 ·N 𝑤)) → ∃𝑥Q ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ))
8219, 81sylbid 149 . . . 4 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → ((𝑦 ·N 𝑣) <N (𝑧 ·N 𝑤) → ∃𝑥Q ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ))
8311, 82sylbid 149 . . 3 (((𝑦N𝑧N) ∧ (𝑤N𝑣N)) → ([⟨𝑦, 𝑧⟩] ~Q <Q [⟨𝑤, 𝑣⟩] ~Q → ∃𝑥Q ([⟨𝑦, 𝑧⟩] ~Q +Q 𝑥) = [⟨𝑤, 𝑣⟩] ~Q ))
841, 6, 10, 832ecoptocl 6517 . 2 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 → ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵))
85 ltaddnq 7222 . . . . 5 ((𝐴Q𝑥Q) → 𝐴 <Q (𝐴 +Q 𝑥))
86 breq2 3933 . . . . 5 ((𝐴 +Q 𝑥) = 𝐵 → (𝐴 <Q (𝐴 +Q 𝑥) ↔ 𝐴 <Q 𝐵))
8785, 86syl5ibcom 154 . . . 4 ((𝐴Q𝑥Q) → ((𝐴 +Q 𝑥) = 𝐵𝐴 <Q 𝐵))
8887rexlimdva 2549 . . 3 (𝐴Q → (∃𝑥Q (𝐴 +Q 𝑥) = 𝐵𝐴 <Q 𝐵))
8988adantr 274 . 2 ((𝐴Q𝐵Q) → (∃𝑥Q (𝐴 +Q 𝑥) = 𝐵𝐴 <Q 𝐵))
9084, 89impbid 128 1 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wex 1468  wcel 1480  wrex 2417  cop 3530   class class class wbr 3929   × cxp 4537  (class class class)co 5774  [cec 6427   / cqs 6428  Ncnpi 7087   +N cpli 7088   ·N cmi 7089   <N clti 7090   ~Q ceq 7094  Qcnq 7095   +Q cplq 7097   <Q cltq 7100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7119  df-pli 7120  df-mi 7121  df-lti 7122  df-plpq 7159  df-mpq 7160  df-enq 7162  df-nqqs 7163  df-plqqs 7164  df-mqqs 7165  df-1nqqs 7166  df-ltnqqs 7168
This theorem is referenced by:  ltexnqi  7224  addlocpr  7351  ltexprlemopl  7416  ltexprlemopu  7418  ltexprlemrl  7425  ltexprlemru  7427  cauappcvgprlemopl  7461  caucvgprlemopl  7484  caucvgprprlemopl  7512
  Copyright terms: Public domain W3C validator