ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reumodprminv GIF version

Theorem reumodprminv 12771
Description: For any prime number and for any positive integer less than this prime number, there is a unique modular inverse of this positive integer. (Contributed by Alexander van der Vekens, 12-May-2018.)
Assertion
Ref Expression
reumodprminv ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃!𝑖 ∈ (1...(𝑃 − 1))((𝑁 · 𝑖) mod 𝑃) = 1)
Distinct variable groups:   𝑖,𝑁   𝑃,𝑖

Proof of Theorem reumodprminv
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → 𝑃 ∈ ℙ)
2 elfzoelz 10339 . . . . 5 (𝑁 ∈ (1..^𝑃) → 𝑁 ∈ ℤ)
32adantl 277 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → 𝑁 ∈ ℤ)
4 prmnn 12627 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
5 prmz 12628 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
6 fzoval 10340 . . . . . . . 8 (𝑃 ∈ ℤ → (1..^𝑃) = (1...(𝑃 − 1)))
75, 6syl 14 . . . . . . 7 (𝑃 ∈ ℙ → (1..^𝑃) = (1...(𝑃 − 1)))
87eleq2d 2299 . . . . . 6 (𝑃 ∈ ℙ → (𝑁 ∈ (1..^𝑃) ↔ 𝑁 ∈ (1...(𝑃 − 1))))
98biimpa 296 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → 𝑁 ∈ (1...(𝑃 − 1)))
10 fzm1ndvds 12362 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ¬ 𝑃𝑁)
114, 9, 10syl2an2r 597 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ¬ 𝑃𝑁)
12 eqid 2229 . . . . . . 7 ((𝑁↑(𝑃 − 2)) mod 𝑃) = ((𝑁↑(𝑃 − 2)) mod 𝑃)
1312modprminv 12767 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) → (((𝑁↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1))
1413simpld 112 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) → ((𝑁↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)))
1513simprd 114 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) → ((𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1)
16 1eluzge0 9765 . . . . . . . . . . 11 1 ∈ (ℤ‘0)
17 fzss1 10255 . . . . . . . . . . 11 (1 ∈ (ℤ‘0) → (1...(𝑃 − 1)) ⊆ (0...(𝑃 − 1)))
1816, 17mp1i 10 . . . . . . . . . 10 (𝑃 ∈ ℙ → (1...(𝑃 − 1)) ⊆ (0...(𝑃 − 1)))
1918sseld 3223 . . . . . . . . 9 (𝑃 ∈ ℙ → (𝑠 ∈ (1...(𝑃 − 1)) → 𝑠 ∈ (0...(𝑃 − 1))))
20193ad2ant1 1042 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) → (𝑠 ∈ (1...(𝑃 − 1)) → 𝑠 ∈ (0...(𝑃 − 1))))
2120imdistani 445 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) ∧ 𝑠 ∈ (1...(𝑃 − 1))) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) ∧ 𝑠 ∈ (0...(𝑃 − 1))))
2212modprminveq 12768 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) → ((𝑠 ∈ (0...(𝑃 − 1)) ∧ ((𝑁 · 𝑠) mod 𝑃) = 1) ↔ 𝑠 = ((𝑁↑(𝑃 − 2)) mod 𝑃)))
2322biimpa 296 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) ∧ (𝑠 ∈ (0...(𝑃 − 1)) ∧ ((𝑁 · 𝑠) mod 𝑃) = 1)) → 𝑠 = ((𝑁↑(𝑃 − 2)) mod 𝑃))
2423eqcomd 2235 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) ∧ (𝑠 ∈ (0...(𝑃 − 1)) ∧ ((𝑁 · 𝑠) mod 𝑃) = 1)) → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠)
2524expr 375 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) ∧ 𝑠 ∈ (0...(𝑃 − 1))) → (((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠))
2621, 25syl 14 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) ∧ 𝑠 ∈ (1...(𝑃 − 1))) → (((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠))
2726ralrimiva 2603 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) → ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠))
2814, 15, 27jca32 310 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) → (((𝑁↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ (((𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1 ∧ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠))))
291, 3, 11, 28syl3anc 1271 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (((𝑁↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ (((𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1 ∧ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠))))
30 oveq2 6008 . . . . . . 7 (𝑖 = ((𝑁↑(𝑃 − 2)) mod 𝑃) → (𝑁 · 𝑖) = (𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)))
3130oveq1d 6015 . . . . . 6 (𝑖 = ((𝑁↑(𝑃 − 2)) mod 𝑃) → ((𝑁 · 𝑖) mod 𝑃) = ((𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
3231eqeq1d 2238 . . . . 5 (𝑖 = ((𝑁↑(𝑃 − 2)) mod 𝑃) → (((𝑁 · 𝑖) mod 𝑃) = 1 ↔ ((𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1))
33 eqeq1 2236 . . . . . . 7 (𝑖 = ((𝑁↑(𝑃 − 2)) mod 𝑃) → (𝑖 = 𝑠 ↔ ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠))
3433imbi2d 230 . . . . . 6 (𝑖 = ((𝑁↑(𝑃 − 2)) mod 𝑃) → ((((𝑁 · 𝑠) mod 𝑃) = 1 → 𝑖 = 𝑠) ↔ (((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠)))
3534ralbidv 2530 . . . . 5 (𝑖 = ((𝑁↑(𝑃 − 2)) mod 𝑃) → (∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → 𝑖 = 𝑠) ↔ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠)))
3632, 35anbi12d 473 . . . 4 (𝑖 = ((𝑁↑(𝑃 − 2)) mod 𝑃) → ((((𝑁 · 𝑖) mod 𝑃) = 1 ∧ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → 𝑖 = 𝑠)) ↔ (((𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1 ∧ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠))))
3736rspcev 2907 . . 3 ((((𝑁↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ (((𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1 ∧ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠))) → ∃𝑖 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑖) mod 𝑃) = 1 ∧ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → 𝑖 = 𝑠)))
3829, 37syl 14 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑖 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑖) mod 𝑃) = 1 ∧ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → 𝑖 = 𝑠)))
39 oveq2 6008 . . . . 5 (𝑖 = 𝑠 → (𝑁 · 𝑖) = (𝑁 · 𝑠))
4039oveq1d 6015 . . . 4 (𝑖 = 𝑠 → ((𝑁 · 𝑖) mod 𝑃) = ((𝑁 · 𝑠) mod 𝑃))
4140eqeq1d 2238 . . 3 (𝑖 = 𝑠 → (((𝑁 · 𝑖) mod 𝑃) = 1 ↔ ((𝑁 · 𝑠) mod 𝑃) = 1))
4241reu8 2999 . 2 (∃!𝑖 ∈ (1...(𝑃 − 1))((𝑁 · 𝑖) mod 𝑃) = 1 ↔ ∃𝑖 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑖) mod 𝑃) = 1 ∧ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → 𝑖 = 𝑠)))
4338, 42sylibr 134 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃!𝑖 ∈ (1...(𝑃 − 1))((𝑁 · 𝑖) mod 𝑃) = 1)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  wral 2508  wrex 2509  ∃!wreu 2510  wss 3197   class class class wbr 4082  cfv 5317  (class class class)co 6000  0cc0 7995  1c1 7996   · cmul 8000  cmin 8313  cn 9106  2c2 9157  cz 9442  cuz 9718  ...cfz 10200  ..^cfzo 10334   mod cmo 10539  cexp 10755  cdvds 12293  cprime 12624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-frec 6535  df-1o 6560  df-2o 6561  df-oadd 6564  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-sup 7147  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756  df-ihash 10993  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785  df-proddc 12057  df-dvds 12294  df-gcd 12470  df-prm 12625  df-phi 12728
This theorem is referenced by:  modprm0  12772
  Copyright terms: Public domain W3C validator