ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reumodprminv GIF version

Theorem reumodprminv 12144
Description: For any prime number and for any positive integer less than this prime number, there is a unique modular inverse of this positive integer. (Contributed by Alexander van der Vekens, 12-May-2018.)
Assertion
Ref Expression
reumodprminv ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃!𝑖 ∈ (1...(𝑃 − 1))((𝑁 · 𝑖) mod 𝑃) = 1)
Distinct variable groups:   𝑖,𝑁   𝑃,𝑖

Proof of Theorem reumodprminv
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → 𝑃 ∈ ℙ)
2 elfzoelz 10056 . . . . 5 (𝑁 ∈ (1..^𝑃) → 𝑁 ∈ ℤ)
32adantl 275 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → 𝑁 ∈ ℤ)
4 prmnn 12003 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
5 prmz 12004 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
6 fzoval 10057 . . . . . . . 8 (𝑃 ∈ ℤ → (1..^𝑃) = (1...(𝑃 − 1)))
75, 6syl 14 . . . . . . 7 (𝑃 ∈ ℙ → (1..^𝑃) = (1...(𝑃 − 1)))
87eleq2d 2227 . . . . . 6 (𝑃 ∈ ℙ → (𝑁 ∈ (1..^𝑃) ↔ 𝑁 ∈ (1...(𝑃 − 1))))
98biimpa 294 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → 𝑁 ∈ (1...(𝑃 − 1)))
10 fzm1ndvds 11761 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ¬ 𝑃𝑁)
114, 9, 10syl2an2r 585 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ¬ 𝑃𝑁)
12 eqid 2157 . . . . . . 7 ((𝑁↑(𝑃 − 2)) mod 𝑃) = ((𝑁↑(𝑃 − 2)) mod 𝑃)
1312modprminv 12140 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) → (((𝑁↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1))
1413simpld 111 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) → ((𝑁↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)))
1513simprd 113 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) → ((𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1)
16 1eluzge0 9491 . . . . . . . . . . 11 1 ∈ (ℤ‘0)
17 fzss1 9972 . . . . . . . . . . 11 (1 ∈ (ℤ‘0) → (1...(𝑃 − 1)) ⊆ (0...(𝑃 − 1)))
1816, 17mp1i 10 . . . . . . . . . 10 (𝑃 ∈ ℙ → (1...(𝑃 − 1)) ⊆ (0...(𝑃 − 1)))
1918sseld 3127 . . . . . . . . 9 (𝑃 ∈ ℙ → (𝑠 ∈ (1...(𝑃 − 1)) → 𝑠 ∈ (0...(𝑃 − 1))))
20193ad2ant1 1003 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) → (𝑠 ∈ (1...(𝑃 − 1)) → 𝑠 ∈ (0...(𝑃 − 1))))
2120imdistani 442 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) ∧ 𝑠 ∈ (1...(𝑃 − 1))) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) ∧ 𝑠 ∈ (0...(𝑃 − 1))))
2212modprminveq 12141 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) → ((𝑠 ∈ (0...(𝑃 − 1)) ∧ ((𝑁 · 𝑠) mod 𝑃) = 1) ↔ 𝑠 = ((𝑁↑(𝑃 − 2)) mod 𝑃)))
2322biimpa 294 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) ∧ (𝑠 ∈ (0...(𝑃 − 1)) ∧ ((𝑁 · 𝑠) mod 𝑃) = 1)) → 𝑠 = ((𝑁↑(𝑃 − 2)) mod 𝑃))
2423eqcomd 2163 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) ∧ (𝑠 ∈ (0...(𝑃 − 1)) ∧ ((𝑁 · 𝑠) mod 𝑃) = 1)) → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠)
2524expr 373 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) ∧ 𝑠 ∈ (0...(𝑃 − 1))) → (((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠))
2621, 25syl 14 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) ∧ 𝑠 ∈ (1...(𝑃 − 1))) → (((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠))
2726ralrimiva 2530 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) → ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠))
2814, 15, 27jca32 308 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) → (((𝑁↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ (((𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1 ∧ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠))))
291, 3, 11, 28syl3anc 1220 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (((𝑁↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ (((𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1 ∧ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠))))
30 oveq2 5835 . . . . . . 7 (𝑖 = ((𝑁↑(𝑃 − 2)) mod 𝑃) → (𝑁 · 𝑖) = (𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)))
3130oveq1d 5842 . . . . . 6 (𝑖 = ((𝑁↑(𝑃 − 2)) mod 𝑃) → ((𝑁 · 𝑖) mod 𝑃) = ((𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
3231eqeq1d 2166 . . . . 5 (𝑖 = ((𝑁↑(𝑃 − 2)) mod 𝑃) → (((𝑁 · 𝑖) mod 𝑃) = 1 ↔ ((𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1))
33 eqeq1 2164 . . . . . . 7 (𝑖 = ((𝑁↑(𝑃 − 2)) mod 𝑃) → (𝑖 = 𝑠 ↔ ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠))
3433imbi2d 229 . . . . . 6 (𝑖 = ((𝑁↑(𝑃 − 2)) mod 𝑃) → ((((𝑁 · 𝑠) mod 𝑃) = 1 → 𝑖 = 𝑠) ↔ (((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠)))
3534ralbidv 2457 . . . . 5 (𝑖 = ((𝑁↑(𝑃 − 2)) mod 𝑃) → (∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → 𝑖 = 𝑠) ↔ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠)))
3632, 35anbi12d 465 . . . 4 (𝑖 = ((𝑁↑(𝑃 − 2)) mod 𝑃) → ((((𝑁 · 𝑖) mod 𝑃) = 1 ∧ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → 𝑖 = 𝑠)) ↔ (((𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1 ∧ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠))))
3736rspcev 2816 . . 3 ((((𝑁↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ (((𝑁 · ((𝑁↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1 ∧ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → ((𝑁↑(𝑃 − 2)) mod 𝑃) = 𝑠))) → ∃𝑖 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑖) mod 𝑃) = 1 ∧ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → 𝑖 = 𝑠)))
3829, 37syl 14 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑖 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑖) mod 𝑃) = 1 ∧ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → 𝑖 = 𝑠)))
39 oveq2 5835 . . . . 5 (𝑖 = 𝑠 → (𝑁 · 𝑖) = (𝑁 · 𝑠))
4039oveq1d 5842 . . . 4 (𝑖 = 𝑠 → ((𝑁 · 𝑖) mod 𝑃) = ((𝑁 · 𝑠) mod 𝑃))
4140eqeq1d 2166 . . 3 (𝑖 = 𝑠 → (((𝑁 · 𝑖) mod 𝑃) = 1 ↔ ((𝑁 · 𝑠) mod 𝑃) = 1))
4241reu8 2908 . 2 (∃!𝑖 ∈ (1...(𝑃 − 1))((𝑁 · 𝑖) mod 𝑃) = 1 ↔ ∃𝑖 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑖) mod 𝑃) = 1 ∧ ∀𝑠 ∈ (1...(𝑃 − 1))(((𝑁 · 𝑠) mod 𝑃) = 1 → 𝑖 = 𝑠)))
4338, 42sylibr 133 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃!𝑖 ∈ (1...(𝑃 − 1))((𝑁 · 𝑖) mod 𝑃) = 1)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  w3a 963   = wceq 1335  wcel 2128  wral 2435  wrex 2436  ∃!wreu 2437  wss 3102   class class class wbr 3967  cfv 5173  (class class class)co 5827  0cc0 7735  1c1 7736   · cmul 7740  cmin 8051  cn 8839  2c2 8890  cz 9173  cuz 9445  ...cfz 9919  ..^cfzo 10051   mod cmo 10231  cexp 10428  cdvds 11695  cprime 12000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4082  ax-sep 4085  ax-nul 4093  ax-pow 4138  ax-pr 4172  ax-un 4396  ax-setind 4499  ax-iinf 4550  ax-cnex 7826  ax-resscn 7827  ax-1cn 7828  ax-1re 7829  ax-icn 7830  ax-addcl 7831  ax-addrcl 7832  ax-mulcl 7833  ax-mulrcl 7834  ax-addcom 7835  ax-mulcom 7836  ax-addass 7837  ax-mulass 7838  ax-distr 7839  ax-i2m1 7840  ax-0lt1 7841  ax-1rid 7842  ax-0id 7843  ax-rnegex 7844  ax-precex 7845  ax-cnre 7846  ax-pre-ltirr 7847  ax-pre-ltwlin 7848  ax-pre-lttrn 7849  ax-pre-apti 7850  ax-pre-ltadd 7851  ax-pre-mulgt0 7852  ax-pre-mulext 7853  ax-arch 7854  ax-caucvg 7855
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-if 3507  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4029  df-mpt 4030  df-tr 4066  df-id 4256  df-po 4259  df-iso 4260  df-iord 4329  df-on 4331  df-ilim 4332  df-suc 4334  df-iom 4553  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-rn 4600  df-res 4601  df-ima 4602  df-iota 5138  df-fun 5175  df-fn 5176  df-f 5177  df-f1 5178  df-fo 5179  df-f1o 5180  df-fv 5181  df-isom 5182  df-riota 5783  df-ov 5830  df-oprab 5831  df-mpo 5832  df-1st 6091  df-2nd 6092  df-recs 6255  df-irdg 6320  df-frec 6341  df-1o 6366  df-2o 6367  df-oadd 6370  df-er 6483  df-en 6689  df-dom 6690  df-fin 6691  df-sup 6931  df-pnf 7917  df-mnf 7918  df-xr 7919  df-ltxr 7920  df-le 7921  df-sub 8053  df-neg 8054  df-reap 8455  df-ap 8462  df-div 8551  df-inn 8840  df-2 8898  df-3 8899  df-4 8900  df-n0 9097  df-z 9174  df-uz 9446  df-q 9536  df-rp 9568  df-fz 9920  df-fzo 10052  df-fl 10179  df-mod 10232  df-seqfrec 10355  df-exp 10429  df-ihash 10662  df-cj 10754  df-re 10755  df-im 10756  df-rsqrt 10910  df-abs 10911  df-clim 11188  df-proddc 11460  df-dvds 11696  df-gcd 11843  df-prm 12001  df-phi 12102
This theorem is referenced by:  modprm0  12145
  Copyright terms: Public domain W3C validator