ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetxpbl GIF version

Theorem xmetxpbl 14898
Description: The maximum metric (Chebyshev distance) on the product of two sets, expressed in terms of balls centered on a point 𝐶 with radius 𝑅. (Contributed by Jim Kingdon, 22-Oct-2023.)
Hypotheses
Ref Expression
xmetxp.p 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))}, ℝ*, < ))
xmetxp.1 (𝜑𝑀 ∈ (∞Met‘𝑋))
xmetxp.2 (𝜑𝑁 ∈ (∞Met‘𝑌))
xmetxpbl.r (𝜑𝑅 ∈ ℝ*)
xmetxpbl.c (𝜑𝐶 ∈ (𝑋 × 𝑌))
Assertion
Ref Expression
xmetxpbl (𝜑 → (𝐶(ball‘𝑃)𝑅) = (((1st𝐶)(ball‘𝑀)𝑅) × ((2nd𝐶)(ball‘𝑁)𝑅)))
Distinct variable groups:   𝑢,𝐶,𝑣   𝑢,𝑀,𝑣   𝑢,𝑁,𝑣   𝑢,𝑋,𝑣   𝑢,𝑌,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑢)   𝑃(𝑣,𝑢)   𝑅(𝑣,𝑢)

Proof of Theorem xmetxpbl
Dummy variables 𝑛 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetxp.p . . . 4 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))}, ℝ*, < ))
2 xmetxp.1 . . . 4 (𝜑𝑀 ∈ (∞Met‘𝑋))
3 xmetxp.2 . . . 4 (𝜑𝑁 ∈ (∞Met‘𝑌))
41, 2, 3xmetxp 14897 . . 3 (𝜑𝑃 ∈ (∞Met‘(𝑋 × 𝑌)))
5 xmetxpbl.c . . 3 (𝜑𝐶 ∈ (𝑋 × 𝑌))
6 xmetxpbl.r . . 3 (𝜑𝑅 ∈ ℝ*)
7 blval 14779 . . 3 ((𝑃 ∈ (∞Met‘(𝑋 × 𝑌)) ∧ 𝐶 ∈ (𝑋 × 𝑌) ∧ 𝑅 ∈ ℝ*) → (𝐶(ball‘𝑃)𝑅) = {𝑡 ∈ (𝑋 × 𝑌) ∣ (𝐶𝑃𝑡) < 𝑅})
84, 5, 6, 7syl3anc 1249 . 2 (𝜑 → (𝐶(ball‘𝑃)𝑅) = {𝑡 ∈ (𝑋 × 𝑌) ∣ (𝐶𝑃𝑡) < 𝑅})
95adantr 276 . . . . . 6 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → 𝐶 ∈ (𝑋 × 𝑌))
10 simpr 110 . . . . . 6 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → 𝑡 ∈ (𝑋 × 𝑌))
112adantr 276 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → 𝑀 ∈ (∞Met‘𝑋))
12 xp1st 6241 . . . . . . . . 9 (𝐶 ∈ (𝑋 × 𝑌) → (1st𝐶) ∈ 𝑋)
139, 12syl 14 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → (1st𝐶) ∈ 𝑋)
14 xp1st 6241 . . . . . . . . 9 (𝑡 ∈ (𝑋 × 𝑌) → (1st𝑡) ∈ 𝑋)
1514adantl 277 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → (1st𝑡) ∈ 𝑋)
16 xmetcl 14742 . . . . . . . 8 ((𝑀 ∈ (∞Met‘𝑋) ∧ (1st𝐶) ∈ 𝑋 ∧ (1st𝑡) ∈ 𝑋) → ((1st𝐶)𝑀(1st𝑡)) ∈ ℝ*)
1711, 13, 15, 16syl3anc 1249 . . . . . . 7 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → ((1st𝐶)𝑀(1st𝑡)) ∈ ℝ*)
183adantr 276 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → 𝑁 ∈ (∞Met‘𝑌))
19 xp2nd 6242 . . . . . . . . 9 (𝐶 ∈ (𝑋 × 𝑌) → (2nd𝐶) ∈ 𝑌)
209, 19syl 14 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → (2nd𝐶) ∈ 𝑌)
21 xp2nd 6242 . . . . . . . . 9 (𝑡 ∈ (𝑋 × 𝑌) → (2nd𝑡) ∈ 𝑌)
2221adantl 277 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → (2nd𝑡) ∈ 𝑌)
23 xmetcl 14742 . . . . . . . 8 ((𝑁 ∈ (∞Met‘𝑌) ∧ (2nd𝐶) ∈ 𝑌 ∧ (2nd𝑡) ∈ 𝑌) → ((2nd𝐶)𝑁(2nd𝑡)) ∈ ℝ*)
2418, 20, 22, 23syl3anc 1249 . . . . . . 7 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → ((2nd𝐶)𝑁(2nd𝑡)) ∈ ℝ*)
25 xrmaxcl 11482 . . . . . . 7 ((((1st𝐶)𝑀(1st𝑡)) ∈ ℝ* ∧ ((2nd𝐶)𝑁(2nd𝑡)) ∈ ℝ*) → sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ) ∈ ℝ*)
2617, 24, 25syl2anc 411 . . . . . 6 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ) ∈ ℝ*)
27 fveq2 5570 . . . . . . . . . 10 (𝑢 = 𝐶 → (1st𝑢) = (1st𝐶))
28 fveq2 5570 . . . . . . . . . 10 (𝑣 = 𝑡 → (1st𝑣) = (1st𝑡))
2927, 28oveqan12d 5953 . . . . . . . . 9 ((𝑢 = 𝐶𝑣 = 𝑡) → ((1st𝑢)𝑀(1st𝑣)) = ((1st𝐶)𝑀(1st𝑡)))
30 fveq2 5570 . . . . . . . . . 10 (𝑢 = 𝐶 → (2nd𝑢) = (2nd𝐶))
31 fveq2 5570 . . . . . . . . . 10 (𝑣 = 𝑡 → (2nd𝑣) = (2nd𝑡))
3230, 31oveqan12d 5953 . . . . . . . . 9 ((𝑢 = 𝐶𝑣 = 𝑡) → ((2nd𝑢)𝑁(2nd𝑣)) = ((2nd𝐶)𝑁(2nd𝑡)))
3329, 32preq12d 3717 . . . . . . . 8 ((𝑢 = 𝐶𝑣 = 𝑡) → {((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))} = {((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))})
3433supeq1d 7071 . . . . . . 7 ((𝑢 = 𝐶𝑣 = 𝑡) → sup({((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))}, ℝ*, < ) = sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ))
3534, 1ovmpoga 6065 . . . . . 6 ((𝐶 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌) ∧ sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ) ∈ ℝ*) → (𝐶𝑃𝑡) = sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ))
369, 10, 26, 35syl3anc 1249 . . . . 5 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → (𝐶𝑃𝑡) = sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ))
3736breq1d 4053 . . . 4 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → ((𝐶𝑃𝑡) < 𝑅 ↔ sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ) < 𝑅))
386adantr 276 . . . . 5 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → 𝑅 ∈ ℝ*)
39 xrmaxltsup 11488 . . . . 5 ((((1st𝐶)𝑀(1st𝑡)) ∈ ℝ* ∧ ((2nd𝐶)𝑁(2nd𝑡)) ∈ ℝ*𝑅 ∈ ℝ*) → (sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ) < 𝑅 ↔ (((1st𝐶)𝑀(1st𝑡)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑡)) < 𝑅)))
4017, 24, 38, 39syl3anc 1249 . . . 4 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → (sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ) < 𝑅 ↔ (((1st𝐶)𝑀(1st𝑡)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑡)) < 𝑅)))
4137, 40bitrd 188 . . 3 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → ((𝐶𝑃𝑡) < 𝑅 ↔ (((1st𝐶)𝑀(1st𝑡)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑡)) < 𝑅)))
4241rabbidva 2759 . 2 (𝜑 → {𝑡 ∈ (𝑋 × 𝑌) ∣ (𝐶𝑃𝑡) < 𝑅} = {𝑡 ∈ (𝑋 × 𝑌) ∣ (((1st𝐶)𝑀(1st𝑡)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑡)) < 𝑅)})
43 1st2nd2 6251 . . . . . . 7 (𝑛 ∈ (𝑋 × 𝑌) → 𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩)
4443ad2antrl 490 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → 𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩)
45 xp1st 6241 . . . . . . . 8 (𝑛 ∈ (𝑋 × 𝑌) → (1st𝑛) ∈ 𝑋)
4645ad2antrl 490 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → (1st𝑛) ∈ 𝑋)
47 simprrl 539 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → ((1st𝐶)𝑀(1st𝑛)) < 𝑅)
485, 12syl 14 . . . . . . . . 9 (𝜑 → (1st𝐶) ∈ 𝑋)
49 elbl 14781 . . . . . . . . 9 ((𝑀 ∈ (∞Met‘𝑋) ∧ (1st𝐶) ∈ 𝑋𝑅 ∈ ℝ*) → ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ↔ ((1st𝑛) ∈ 𝑋 ∧ ((1st𝐶)𝑀(1st𝑛)) < 𝑅)))
502, 48, 6, 49syl3anc 1249 . . . . . . . 8 (𝜑 → ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ↔ ((1st𝑛) ∈ 𝑋 ∧ ((1st𝐶)𝑀(1st𝑛)) < 𝑅)))
5150adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ↔ ((1st𝑛) ∈ 𝑋 ∧ ((1st𝐶)𝑀(1st𝑛)) < 𝑅)))
5246, 47, 51mpbir2and 946 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → (1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅))
53 xp2nd 6242 . . . . . . . 8 (𝑛 ∈ (𝑋 × 𝑌) → (2nd𝑛) ∈ 𝑌)
5453ad2antrl 490 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → (2nd𝑛) ∈ 𝑌)
55 simprrr 540 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)
565, 19syl 14 . . . . . . . . 9 (𝜑 → (2nd𝐶) ∈ 𝑌)
57 elbl 14781 . . . . . . . . 9 ((𝑁 ∈ (∞Met‘𝑌) ∧ (2nd𝐶) ∈ 𝑌𝑅 ∈ ℝ*) → ((2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅) ↔ ((2nd𝑛) ∈ 𝑌 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)))
583, 56, 6, 57syl3anc 1249 . . . . . . . 8 (𝜑 → ((2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅) ↔ ((2nd𝑛) ∈ 𝑌 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)))
5958adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → ((2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅) ↔ ((2nd𝑛) ∈ 𝑌 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)))
6054, 55, 59mpbir2and 946 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅))
6144, 52, 60jca32 310 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅))))
62 simprl 529 . . . . . . . 8 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → 𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩)
63 simprrl 539 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → (1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅))
6450adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ↔ ((1st𝑛) ∈ 𝑋 ∧ ((1st𝐶)𝑀(1st𝑛)) < 𝑅)))
6563, 64mpbid 147 . . . . . . . . 9 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → ((1st𝑛) ∈ 𝑋 ∧ ((1st𝐶)𝑀(1st𝑛)) < 𝑅))
6665simpld 112 . . . . . . . 8 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → (1st𝑛) ∈ 𝑋)
67 simprrr 540 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅))
6858adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → ((2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅) ↔ ((2nd𝑛) ∈ 𝑌 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)))
6967, 68mpbid 147 . . . . . . . . 9 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → ((2nd𝑛) ∈ 𝑌 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))
7069simpld 112 . . . . . . . 8 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → (2nd𝑛) ∈ 𝑌)
7162, 66, 70jca32 310 . . . . . . 7 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ 𝑋 ∧ (2nd𝑛) ∈ 𝑌)))
72 elxp6 6245 . . . . . . 7 (𝑛 ∈ (𝑋 × 𝑌) ↔ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ 𝑋 ∧ (2nd𝑛) ∈ 𝑌)))
7371, 72sylibr 134 . . . . . 6 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → 𝑛 ∈ (𝑋 × 𝑌))
7465simprd 114 . . . . . 6 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → ((1st𝐶)𝑀(1st𝑛)) < 𝑅)
7569simprd 114 . . . . . 6 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)
7673, 74, 75jca32 310 . . . . 5 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)))
7761, 76impbida 596 . . . 4 (𝜑 → ((𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)) ↔ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))))
78 fveq2 5570 . . . . . . . 8 (𝑡 = 𝑛 → (1st𝑡) = (1st𝑛))
7978oveq2d 5950 . . . . . . 7 (𝑡 = 𝑛 → ((1st𝐶)𝑀(1st𝑡)) = ((1st𝐶)𝑀(1st𝑛)))
8079breq1d 4053 . . . . . 6 (𝑡 = 𝑛 → (((1st𝐶)𝑀(1st𝑡)) < 𝑅 ↔ ((1st𝐶)𝑀(1st𝑛)) < 𝑅))
81 fveq2 5570 . . . . . . . 8 (𝑡 = 𝑛 → (2nd𝑡) = (2nd𝑛))
8281oveq2d 5950 . . . . . . 7 (𝑡 = 𝑛 → ((2nd𝐶)𝑁(2nd𝑡)) = ((2nd𝐶)𝑁(2nd𝑛)))
8382breq1d 4053 . . . . . 6 (𝑡 = 𝑛 → (((2nd𝐶)𝑁(2nd𝑡)) < 𝑅 ↔ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))
8480, 83anbi12d 473 . . . . 5 (𝑡 = 𝑛 → ((((1st𝐶)𝑀(1st𝑡)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑡)) < 𝑅) ↔ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)))
8584elrab 2928 . . . 4 (𝑛 ∈ {𝑡 ∈ (𝑋 × 𝑌) ∣ (((1st𝐶)𝑀(1st𝑡)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑡)) < 𝑅)} ↔ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)))
86 elxp6 6245 . . . 4 (𝑛 ∈ (((1st𝐶)(ball‘𝑀)𝑅) × ((2nd𝐶)(ball‘𝑁)𝑅)) ↔ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅))))
8777, 85, 863bitr4g 223 . . 3 (𝜑 → (𝑛 ∈ {𝑡 ∈ (𝑋 × 𝑌) ∣ (((1st𝐶)𝑀(1st𝑡)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑡)) < 𝑅)} ↔ 𝑛 ∈ (((1st𝐶)(ball‘𝑀)𝑅) × ((2nd𝐶)(ball‘𝑁)𝑅))))
8887eqrdv 2202 . 2 (𝜑 → {𝑡 ∈ (𝑋 × 𝑌) ∣ (((1st𝐶)𝑀(1st𝑡)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑡)) < 𝑅)} = (((1st𝐶)(ball‘𝑀)𝑅) × ((2nd𝐶)(ball‘𝑁)𝑅)))
898, 42, 883eqtrd 2241 1 (𝜑 → (𝐶(ball‘𝑃)𝑅) = (((1st𝐶)(ball‘𝑀)𝑅) × ((2nd𝐶)(ball‘𝑁)𝑅)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  {crab 2487  {cpr 3633  cop 3635   class class class wbr 4043   × cxp 4671  cfv 5268  (class class class)co 5934  cmpo 5936  1st c1st 6214  2nd c2nd 6215  supcsup 7066  *cxr 8088   < clt 8089  ∞Metcxmet 14216  ballcbl 14218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025  ax-arch 8026  ax-caucvg 8027
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-isom 5277  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-map 6727  df-sup 7068  df-inf 7069  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-n0 9278  df-z 9355  df-uz 9631  df-q 9723  df-rp 9758  df-xneg 9876  df-xadd 9877  df-seqfrec 10574  df-exp 10665  df-cj 11072  df-re 11073  df-im 11074  df-rsqrt 11228  df-abs 11229  df-topgen 13010  df-psmet 14223  df-xmet 14224  df-bl 14226  df-mopn 14227  df-top 14388  df-topon 14401  df-bases 14433
This theorem is referenced by:  xmettxlem  14899  xmettx  14900
  Copyright terms: Public domain W3C validator