ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetxpbl GIF version

Theorem xmetxpbl 13148
Description: The maximum metric (Chebyshev distance) on the product of two sets, expressed in terms of balls centered on a point 𝐶 with radius 𝑅. (Contributed by Jim Kingdon, 22-Oct-2023.)
Hypotheses
Ref Expression
xmetxp.p 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))}, ℝ*, < ))
xmetxp.1 (𝜑𝑀 ∈ (∞Met‘𝑋))
xmetxp.2 (𝜑𝑁 ∈ (∞Met‘𝑌))
xmetxpbl.r (𝜑𝑅 ∈ ℝ*)
xmetxpbl.c (𝜑𝐶 ∈ (𝑋 × 𝑌))
Assertion
Ref Expression
xmetxpbl (𝜑 → (𝐶(ball‘𝑃)𝑅) = (((1st𝐶)(ball‘𝑀)𝑅) × ((2nd𝐶)(ball‘𝑁)𝑅)))
Distinct variable groups:   𝑢,𝐶,𝑣   𝑢,𝑀,𝑣   𝑢,𝑁,𝑣   𝑢,𝑋,𝑣   𝑢,𝑌,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑢)   𝑃(𝑣,𝑢)   𝑅(𝑣,𝑢)

Proof of Theorem xmetxpbl
Dummy variables 𝑛 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetxp.p . . . 4 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))}, ℝ*, < ))
2 xmetxp.1 . . . 4 (𝜑𝑀 ∈ (∞Met‘𝑋))
3 xmetxp.2 . . . 4 (𝜑𝑁 ∈ (∞Met‘𝑌))
41, 2, 3xmetxp 13147 . . 3 (𝜑𝑃 ∈ (∞Met‘(𝑋 × 𝑌)))
5 xmetxpbl.c . . 3 (𝜑𝐶 ∈ (𝑋 × 𝑌))
6 xmetxpbl.r . . 3 (𝜑𝑅 ∈ ℝ*)
7 blval 13029 . . 3 ((𝑃 ∈ (∞Met‘(𝑋 × 𝑌)) ∧ 𝐶 ∈ (𝑋 × 𝑌) ∧ 𝑅 ∈ ℝ*) → (𝐶(ball‘𝑃)𝑅) = {𝑡 ∈ (𝑋 × 𝑌) ∣ (𝐶𝑃𝑡) < 𝑅})
84, 5, 6, 7syl3anc 1228 . 2 (𝜑 → (𝐶(ball‘𝑃)𝑅) = {𝑡 ∈ (𝑋 × 𝑌) ∣ (𝐶𝑃𝑡) < 𝑅})
95adantr 274 . . . . . 6 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → 𝐶 ∈ (𝑋 × 𝑌))
10 simpr 109 . . . . . 6 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → 𝑡 ∈ (𝑋 × 𝑌))
112adantr 274 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → 𝑀 ∈ (∞Met‘𝑋))
12 xp1st 6133 . . . . . . . . 9 (𝐶 ∈ (𝑋 × 𝑌) → (1st𝐶) ∈ 𝑋)
139, 12syl 14 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → (1st𝐶) ∈ 𝑋)
14 xp1st 6133 . . . . . . . . 9 (𝑡 ∈ (𝑋 × 𝑌) → (1st𝑡) ∈ 𝑋)
1514adantl 275 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → (1st𝑡) ∈ 𝑋)
16 xmetcl 12992 . . . . . . . 8 ((𝑀 ∈ (∞Met‘𝑋) ∧ (1st𝐶) ∈ 𝑋 ∧ (1st𝑡) ∈ 𝑋) → ((1st𝐶)𝑀(1st𝑡)) ∈ ℝ*)
1711, 13, 15, 16syl3anc 1228 . . . . . . 7 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → ((1st𝐶)𝑀(1st𝑡)) ∈ ℝ*)
183adantr 274 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → 𝑁 ∈ (∞Met‘𝑌))
19 xp2nd 6134 . . . . . . . . 9 (𝐶 ∈ (𝑋 × 𝑌) → (2nd𝐶) ∈ 𝑌)
209, 19syl 14 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → (2nd𝐶) ∈ 𝑌)
21 xp2nd 6134 . . . . . . . . 9 (𝑡 ∈ (𝑋 × 𝑌) → (2nd𝑡) ∈ 𝑌)
2221adantl 275 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → (2nd𝑡) ∈ 𝑌)
23 xmetcl 12992 . . . . . . . 8 ((𝑁 ∈ (∞Met‘𝑌) ∧ (2nd𝐶) ∈ 𝑌 ∧ (2nd𝑡) ∈ 𝑌) → ((2nd𝐶)𝑁(2nd𝑡)) ∈ ℝ*)
2418, 20, 22, 23syl3anc 1228 . . . . . . 7 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → ((2nd𝐶)𝑁(2nd𝑡)) ∈ ℝ*)
25 xrmaxcl 11193 . . . . . . 7 ((((1st𝐶)𝑀(1st𝑡)) ∈ ℝ* ∧ ((2nd𝐶)𝑁(2nd𝑡)) ∈ ℝ*) → sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ) ∈ ℝ*)
2617, 24, 25syl2anc 409 . . . . . 6 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ) ∈ ℝ*)
27 fveq2 5486 . . . . . . . . . 10 (𝑢 = 𝐶 → (1st𝑢) = (1st𝐶))
28 fveq2 5486 . . . . . . . . . 10 (𝑣 = 𝑡 → (1st𝑣) = (1st𝑡))
2927, 28oveqan12d 5861 . . . . . . . . 9 ((𝑢 = 𝐶𝑣 = 𝑡) → ((1st𝑢)𝑀(1st𝑣)) = ((1st𝐶)𝑀(1st𝑡)))
30 fveq2 5486 . . . . . . . . . 10 (𝑢 = 𝐶 → (2nd𝑢) = (2nd𝐶))
31 fveq2 5486 . . . . . . . . . 10 (𝑣 = 𝑡 → (2nd𝑣) = (2nd𝑡))
3230, 31oveqan12d 5861 . . . . . . . . 9 ((𝑢 = 𝐶𝑣 = 𝑡) → ((2nd𝑢)𝑁(2nd𝑣)) = ((2nd𝐶)𝑁(2nd𝑡)))
3329, 32preq12d 3661 . . . . . . . 8 ((𝑢 = 𝐶𝑣 = 𝑡) → {((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))} = {((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))})
3433supeq1d 6952 . . . . . . 7 ((𝑢 = 𝐶𝑣 = 𝑡) → sup({((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))}, ℝ*, < ) = sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ))
3534, 1ovmpoga 5971 . . . . . 6 ((𝐶 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌) ∧ sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ) ∈ ℝ*) → (𝐶𝑃𝑡) = sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ))
369, 10, 26, 35syl3anc 1228 . . . . 5 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → (𝐶𝑃𝑡) = sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ))
3736breq1d 3992 . . . 4 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → ((𝐶𝑃𝑡) < 𝑅 ↔ sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ) < 𝑅))
386adantr 274 . . . . 5 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → 𝑅 ∈ ℝ*)
39 xrmaxltsup 11199 . . . . 5 ((((1st𝐶)𝑀(1st𝑡)) ∈ ℝ* ∧ ((2nd𝐶)𝑁(2nd𝑡)) ∈ ℝ*𝑅 ∈ ℝ*) → (sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ) < 𝑅 ↔ (((1st𝐶)𝑀(1st𝑡)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑡)) < 𝑅)))
4017, 24, 38, 39syl3anc 1228 . . . 4 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → (sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ) < 𝑅 ↔ (((1st𝐶)𝑀(1st𝑡)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑡)) < 𝑅)))
4137, 40bitrd 187 . . 3 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → ((𝐶𝑃𝑡) < 𝑅 ↔ (((1st𝐶)𝑀(1st𝑡)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑡)) < 𝑅)))
4241rabbidva 2714 . 2 (𝜑 → {𝑡 ∈ (𝑋 × 𝑌) ∣ (𝐶𝑃𝑡) < 𝑅} = {𝑡 ∈ (𝑋 × 𝑌) ∣ (((1st𝐶)𝑀(1st𝑡)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑡)) < 𝑅)})
43 1st2nd2 6143 . . . . . . 7 (𝑛 ∈ (𝑋 × 𝑌) → 𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩)
4443ad2antrl 482 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → 𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩)
45 xp1st 6133 . . . . . . . 8 (𝑛 ∈ (𝑋 × 𝑌) → (1st𝑛) ∈ 𝑋)
4645ad2antrl 482 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → (1st𝑛) ∈ 𝑋)
47 simprrl 529 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → ((1st𝐶)𝑀(1st𝑛)) < 𝑅)
485, 12syl 14 . . . . . . . . 9 (𝜑 → (1st𝐶) ∈ 𝑋)
49 elbl 13031 . . . . . . . . 9 ((𝑀 ∈ (∞Met‘𝑋) ∧ (1st𝐶) ∈ 𝑋𝑅 ∈ ℝ*) → ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ↔ ((1st𝑛) ∈ 𝑋 ∧ ((1st𝐶)𝑀(1st𝑛)) < 𝑅)))
502, 48, 6, 49syl3anc 1228 . . . . . . . 8 (𝜑 → ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ↔ ((1st𝑛) ∈ 𝑋 ∧ ((1st𝐶)𝑀(1st𝑛)) < 𝑅)))
5150adantr 274 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ↔ ((1st𝑛) ∈ 𝑋 ∧ ((1st𝐶)𝑀(1st𝑛)) < 𝑅)))
5246, 47, 51mpbir2and 934 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → (1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅))
53 xp2nd 6134 . . . . . . . 8 (𝑛 ∈ (𝑋 × 𝑌) → (2nd𝑛) ∈ 𝑌)
5453ad2antrl 482 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → (2nd𝑛) ∈ 𝑌)
55 simprrr 530 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)
565, 19syl 14 . . . . . . . . 9 (𝜑 → (2nd𝐶) ∈ 𝑌)
57 elbl 13031 . . . . . . . . 9 ((𝑁 ∈ (∞Met‘𝑌) ∧ (2nd𝐶) ∈ 𝑌𝑅 ∈ ℝ*) → ((2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅) ↔ ((2nd𝑛) ∈ 𝑌 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)))
583, 56, 6, 57syl3anc 1228 . . . . . . . 8 (𝜑 → ((2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅) ↔ ((2nd𝑛) ∈ 𝑌 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)))
5958adantr 274 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → ((2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅) ↔ ((2nd𝑛) ∈ 𝑌 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)))
6054, 55, 59mpbir2and 934 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅))
6144, 52, 60jca32 308 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅))))
62 simprl 521 . . . . . . . 8 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → 𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩)
63 simprrl 529 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → (1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅))
6450adantr 274 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ↔ ((1st𝑛) ∈ 𝑋 ∧ ((1st𝐶)𝑀(1st𝑛)) < 𝑅)))
6563, 64mpbid 146 . . . . . . . . 9 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → ((1st𝑛) ∈ 𝑋 ∧ ((1st𝐶)𝑀(1st𝑛)) < 𝑅))
6665simpld 111 . . . . . . . 8 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → (1st𝑛) ∈ 𝑋)
67 simprrr 530 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅))
6858adantr 274 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → ((2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅) ↔ ((2nd𝑛) ∈ 𝑌 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)))
6967, 68mpbid 146 . . . . . . . . 9 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → ((2nd𝑛) ∈ 𝑌 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))
7069simpld 111 . . . . . . . 8 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → (2nd𝑛) ∈ 𝑌)
7162, 66, 70jca32 308 . . . . . . 7 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ 𝑋 ∧ (2nd𝑛) ∈ 𝑌)))
72 elxp6 6137 . . . . . . 7 (𝑛 ∈ (𝑋 × 𝑌) ↔ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ 𝑋 ∧ (2nd𝑛) ∈ 𝑌)))
7371, 72sylibr 133 . . . . . 6 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → 𝑛 ∈ (𝑋 × 𝑌))
7465simprd 113 . . . . . 6 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → ((1st𝐶)𝑀(1st𝑛)) < 𝑅)
7569simprd 113 . . . . . 6 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)
7673, 74, 75jca32 308 . . . . 5 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)))
7761, 76impbida 586 . . . 4 (𝜑 → ((𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)) ↔ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))))
78 fveq2 5486 . . . . . . . 8 (𝑡 = 𝑛 → (1st𝑡) = (1st𝑛))
7978oveq2d 5858 . . . . . . 7 (𝑡 = 𝑛 → ((1st𝐶)𝑀(1st𝑡)) = ((1st𝐶)𝑀(1st𝑛)))
8079breq1d 3992 . . . . . 6 (𝑡 = 𝑛 → (((1st𝐶)𝑀(1st𝑡)) < 𝑅 ↔ ((1st𝐶)𝑀(1st𝑛)) < 𝑅))
81 fveq2 5486 . . . . . . . 8 (𝑡 = 𝑛 → (2nd𝑡) = (2nd𝑛))
8281oveq2d 5858 . . . . . . 7 (𝑡 = 𝑛 → ((2nd𝐶)𝑁(2nd𝑡)) = ((2nd𝐶)𝑁(2nd𝑛)))
8382breq1d 3992 . . . . . 6 (𝑡 = 𝑛 → (((2nd𝐶)𝑁(2nd𝑡)) < 𝑅 ↔ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))
8480, 83anbi12d 465 . . . . 5 (𝑡 = 𝑛 → ((((1st𝐶)𝑀(1st𝑡)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑡)) < 𝑅) ↔ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)))
8584elrab 2882 . . . 4 (𝑛 ∈ {𝑡 ∈ (𝑋 × 𝑌) ∣ (((1st𝐶)𝑀(1st𝑡)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑡)) < 𝑅)} ↔ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)))
86 elxp6 6137 . . . 4 (𝑛 ∈ (((1st𝐶)(ball‘𝑀)𝑅) × ((2nd𝐶)(ball‘𝑁)𝑅)) ↔ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅))))
8777, 85, 863bitr4g 222 . . 3 (𝜑 → (𝑛 ∈ {𝑡 ∈ (𝑋 × 𝑌) ∣ (((1st𝐶)𝑀(1st𝑡)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑡)) < 𝑅)} ↔ 𝑛 ∈ (((1st𝐶)(ball‘𝑀)𝑅) × ((2nd𝐶)(ball‘𝑁)𝑅))))
8887eqrdv 2163 . 2 (𝜑 → {𝑡 ∈ (𝑋 × 𝑌) ∣ (((1st𝐶)𝑀(1st𝑡)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑡)) < 𝑅)} = (((1st𝐶)(ball‘𝑀)𝑅) × ((2nd𝐶)(ball‘𝑁)𝑅)))
898, 42, 883eqtrd 2202 1 (𝜑 → (𝐶(ball‘𝑃)𝑅) = (((1st𝐶)(ball‘𝑀)𝑅) × ((2nd𝐶)(ball‘𝑁)𝑅)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  {crab 2448  {cpr 3577  cop 3579   class class class wbr 3982   × cxp 4602  cfv 5188  (class class class)co 5842  cmpo 5844  1st c1st 6106  2nd c2nd 6107  supcsup 6947  *cxr 7932   < clt 7933  ∞Metcxmet 12620  ballcbl 12622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-map 6616  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-bl 12630  df-mopn 12631  df-top 12636  df-topon 12649  df-bases 12681
This theorem is referenced by:  xmettxlem  13149  xmettx  13150
  Copyright terms: Public domain W3C validator