ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetxpbl GIF version

Theorem xmetxpbl 15055
Description: The maximum metric (Chebyshev distance) on the product of two sets, expressed in terms of balls centered on a point 𝐶 with radius 𝑅. (Contributed by Jim Kingdon, 22-Oct-2023.)
Hypotheses
Ref Expression
xmetxp.p 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))}, ℝ*, < ))
xmetxp.1 (𝜑𝑀 ∈ (∞Met‘𝑋))
xmetxp.2 (𝜑𝑁 ∈ (∞Met‘𝑌))
xmetxpbl.r (𝜑𝑅 ∈ ℝ*)
xmetxpbl.c (𝜑𝐶 ∈ (𝑋 × 𝑌))
Assertion
Ref Expression
xmetxpbl (𝜑 → (𝐶(ball‘𝑃)𝑅) = (((1st𝐶)(ball‘𝑀)𝑅) × ((2nd𝐶)(ball‘𝑁)𝑅)))
Distinct variable groups:   𝑢,𝐶,𝑣   𝑢,𝑀,𝑣   𝑢,𝑁,𝑣   𝑢,𝑋,𝑣   𝑢,𝑌,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑢)   𝑃(𝑣,𝑢)   𝑅(𝑣,𝑢)

Proof of Theorem xmetxpbl
Dummy variables 𝑛 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetxp.p . . . 4 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))}, ℝ*, < ))
2 xmetxp.1 . . . 4 (𝜑𝑀 ∈ (∞Met‘𝑋))
3 xmetxp.2 . . . 4 (𝜑𝑁 ∈ (∞Met‘𝑌))
41, 2, 3xmetxp 15054 . . 3 (𝜑𝑃 ∈ (∞Met‘(𝑋 × 𝑌)))
5 xmetxpbl.c . . 3 (𝜑𝐶 ∈ (𝑋 × 𝑌))
6 xmetxpbl.r . . 3 (𝜑𝑅 ∈ ℝ*)
7 blval 14936 . . 3 ((𝑃 ∈ (∞Met‘(𝑋 × 𝑌)) ∧ 𝐶 ∈ (𝑋 × 𝑌) ∧ 𝑅 ∈ ℝ*) → (𝐶(ball‘𝑃)𝑅) = {𝑡 ∈ (𝑋 × 𝑌) ∣ (𝐶𝑃𝑡) < 𝑅})
84, 5, 6, 7syl3anc 1250 . 2 (𝜑 → (𝐶(ball‘𝑃)𝑅) = {𝑡 ∈ (𝑋 × 𝑌) ∣ (𝐶𝑃𝑡) < 𝑅})
95adantr 276 . . . . . 6 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → 𝐶 ∈ (𝑋 × 𝑌))
10 simpr 110 . . . . . 6 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → 𝑡 ∈ (𝑋 × 𝑌))
112adantr 276 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → 𝑀 ∈ (∞Met‘𝑋))
12 xp1st 6264 . . . . . . . . 9 (𝐶 ∈ (𝑋 × 𝑌) → (1st𝐶) ∈ 𝑋)
139, 12syl 14 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → (1st𝐶) ∈ 𝑋)
14 xp1st 6264 . . . . . . . . 9 (𝑡 ∈ (𝑋 × 𝑌) → (1st𝑡) ∈ 𝑋)
1514adantl 277 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → (1st𝑡) ∈ 𝑋)
16 xmetcl 14899 . . . . . . . 8 ((𝑀 ∈ (∞Met‘𝑋) ∧ (1st𝐶) ∈ 𝑋 ∧ (1st𝑡) ∈ 𝑋) → ((1st𝐶)𝑀(1st𝑡)) ∈ ℝ*)
1711, 13, 15, 16syl3anc 1250 . . . . . . 7 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → ((1st𝐶)𝑀(1st𝑡)) ∈ ℝ*)
183adantr 276 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → 𝑁 ∈ (∞Met‘𝑌))
19 xp2nd 6265 . . . . . . . . 9 (𝐶 ∈ (𝑋 × 𝑌) → (2nd𝐶) ∈ 𝑌)
209, 19syl 14 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → (2nd𝐶) ∈ 𝑌)
21 xp2nd 6265 . . . . . . . . 9 (𝑡 ∈ (𝑋 × 𝑌) → (2nd𝑡) ∈ 𝑌)
2221adantl 277 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → (2nd𝑡) ∈ 𝑌)
23 xmetcl 14899 . . . . . . . 8 ((𝑁 ∈ (∞Met‘𝑌) ∧ (2nd𝐶) ∈ 𝑌 ∧ (2nd𝑡) ∈ 𝑌) → ((2nd𝐶)𝑁(2nd𝑡)) ∈ ℝ*)
2418, 20, 22, 23syl3anc 1250 . . . . . . 7 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → ((2nd𝐶)𝑁(2nd𝑡)) ∈ ℝ*)
25 xrmaxcl 11638 . . . . . . 7 ((((1st𝐶)𝑀(1st𝑡)) ∈ ℝ* ∧ ((2nd𝐶)𝑁(2nd𝑡)) ∈ ℝ*) → sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ) ∈ ℝ*)
2617, 24, 25syl2anc 411 . . . . . 6 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ) ∈ ℝ*)
27 fveq2 5589 . . . . . . . . . 10 (𝑢 = 𝐶 → (1st𝑢) = (1st𝐶))
28 fveq2 5589 . . . . . . . . . 10 (𝑣 = 𝑡 → (1st𝑣) = (1st𝑡))
2927, 28oveqan12d 5976 . . . . . . . . 9 ((𝑢 = 𝐶𝑣 = 𝑡) → ((1st𝑢)𝑀(1st𝑣)) = ((1st𝐶)𝑀(1st𝑡)))
30 fveq2 5589 . . . . . . . . . 10 (𝑢 = 𝐶 → (2nd𝑢) = (2nd𝐶))
31 fveq2 5589 . . . . . . . . . 10 (𝑣 = 𝑡 → (2nd𝑣) = (2nd𝑡))
3230, 31oveqan12d 5976 . . . . . . . . 9 ((𝑢 = 𝐶𝑣 = 𝑡) → ((2nd𝑢)𝑁(2nd𝑣)) = ((2nd𝐶)𝑁(2nd𝑡)))
3329, 32preq12d 3723 . . . . . . . 8 ((𝑢 = 𝐶𝑣 = 𝑡) → {((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))} = {((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))})
3433supeq1d 7104 . . . . . . 7 ((𝑢 = 𝐶𝑣 = 𝑡) → sup({((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))}, ℝ*, < ) = sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ))
3534, 1ovmpoga 6088 . . . . . 6 ((𝐶 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌) ∧ sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ) ∈ ℝ*) → (𝐶𝑃𝑡) = sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ))
369, 10, 26, 35syl3anc 1250 . . . . 5 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → (𝐶𝑃𝑡) = sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ))
3736breq1d 4061 . . . 4 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → ((𝐶𝑃𝑡) < 𝑅 ↔ sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ) < 𝑅))
386adantr 276 . . . . 5 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → 𝑅 ∈ ℝ*)
39 xrmaxltsup 11644 . . . . 5 ((((1st𝐶)𝑀(1st𝑡)) ∈ ℝ* ∧ ((2nd𝐶)𝑁(2nd𝑡)) ∈ ℝ*𝑅 ∈ ℝ*) → (sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ) < 𝑅 ↔ (((1st𝐶)𝑀(1st𝑡)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑡)) < 𝑅)))
4017, 24, 38, 39syl3anc 1250 . . . 4 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → (sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ) < 𝑅 ↔ (((1st𝐶)𝑀(1st𝑡)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑡)) < 𝑅)))
4137, 40bitrd 188 . . 3 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → ((𝐶𝑃𝑡) < 𝑅 ↔ (((1st𝐶)𝑀(1st𝑡)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑡)) < 𝑅)))
4241rabbidva 2761 . 2 (𝜑 → {𝑡 ∈ (𝑋 × 𝑌) ∣ (𝐶𝑃𝑡) < 𝑅} = {𝑡 ∈ (𝑋 × 𝑌) ∣ (((1st𝐶)𝑀(1st𝑡)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑡)) < 𝑅)})
43 1st2nd2 6274 . . . . . . 7 (𝑛 ∈ (𝑋 × 𝑌) → 𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩)
4443ad2antrl 490 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → 𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩)
45 xp1st 6264 . . . . . . . 8 (𝑛 ∈ (𝑋 × 𝑌) → (1st𝑛) ∈ 𝑋)
4645ad2antrl 490 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → (1st𝑛) ∈ 𝑋)
47 simprrl 539 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → ((1st𝐶)𝑀(1st𝑛)) < 𝑅)
485, 12syl 14 . . . . . . . . 9 (𝜑 → (1st𝐶) ∈ 𝑋)
49 elbl 14938 . . . . . . . . 9 ((𝑀 ∈ (∞Met‘𝑋) ∧ (1st𝐶) ∈ 𝑋𝑅 ∈ ℝ*) → ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ↔ ((1st𝑛) ∈ 𝑋 ∧ ((1st𝐶)𝑀(1st𝑛)) < 𝑅)))
502, 48, 6, 49syl3anc 1250 . . . . . . . 8 (𝜑 → ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ↔ ((1st𝑛) ∈ 𝑋 ∧ ((1st𝐶)𝑀(1st𝑛)) < 𝑅)))
5150adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ↔ ((1st𝑛) ∈ 𝑋 ∧ ((1st𝐶)𝑀(1st𝑛)) < 𝑅)))
5246, 47, 51mpbir2and 947 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → (1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅))
53 xp2nd 6265 . . . . . . . 8 (𝑛 ∈ (𝑋 × 𝑌) → (2nd𝑛) ∈ 𝑌)
5453ad2antrl 490 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → (2nd𝑛) ∈ 𝑌)
55 simprrr 540 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)
565, 19syl 14 . . . . . . . . 9 (𝜑 → (2nd𝐶) ∈ 𝑌)
57 elbl 14938 . . . . . . . . 9 ((𝑁 ∈ (∞Met‘𝑌) ∧ (2nd𝐶) ∈ 𝑌𝑅 ∈ ℝ*) → ((2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅) ↔ ((2nd𝑛) ∈ 𝑌 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)))
583, 56, 6, 57syl3anc 1250 . . . . . . . 8 (𝜑 → ((2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅) ↔ ((2nd𝑛) ∈ 𝑌 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)))
5958adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → ((2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅) ↔ ((2nd𝑛) ∈ 𝑌 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)))
6054, 55, 59mpbir2and 947 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅))
6144, 52, 60jca32 310 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅))))
62 simprl 529 . . . . . . . 8 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → 𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩)
63 simprrl 539 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → (1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅))
6450adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ↔ ((1st𝑛) ∈ 𝑋 ∧ ((1st𝐶)𝑀(1st𝑛)) < 𝑅)))
6563, 64mpbid 147 . . . . . . . . 9 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → ((1st𝑛) ∈ 𝑋 ∧ ((1st𝐶)𝑀(1st𝑛)) < 𝑅))
6665simpld 112 . . . . . . . 8 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → (1st𝑛) ∈ 𝑋)
67 simprrr 540 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅))
6858adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → ((2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅) ↔ ((2nd𝑛) ∈ 𝑌 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)))
6967, 68mpbid 147 . . . . . . . . 9 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → ((2nd𝑛) ∈ 𝑌 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))
7069simpld 112 . . . . . . . 8 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → (2nd𝑛) ∈ 𝑌)
7162, 66, 70jca32 310 . . . . . . 7 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ 𝑋 ∧ (2nd𝑛) ∈ 𝑌)))
72 elxp6 6268 . . . . . . 7 (𝑛 ∈ (𝑋 × 𝑌) ↔ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ 𝑋 ∧ (2nd𝑛) ∈ 𝑌)))
7371, 72sylibr 134 . . . . . 6 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → 𝑛 ∈ (𝑋 × 𝑌))
7465simprd 114 . . . . . 6 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → ((1st𝐶)𝑀(1st𝑛)) < 𝑅)
7569simprd 114 . . . . . 6 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)
7673, 74, 75jca32 310 . . . . 5 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)))
7761, 76impbida 596 . . . 4 (𝜑 → ((𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)) ↔ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))))
78 fveq2 5589 . . . . . . . 8 (𝑡 = 𝑛 → (1st𝑡) = (1st𝑛))
7978oveq2d 5973 . . . . . . 7 (𝑡 = 𝑛 → ((1st𝐶)𝑀(1st𝑡)) = ((1st𝐶)𝑀(1st𝑛)))
8079breq1d 4061 . . . . . 6 (𝑡 = 𝑛 → (((1st𝐶)𝑀(1st𝑡)) < 𝑅 ↔ ((1st𝐶)𝑀(1st𝑛)) < 𝑅))
81 fveq2 5589 . . . . . . . 8 (𝑡 = 𝑛 → (2nd𝑡) = (2nd𝑛))
8281oveq2d 5973 . . . . . . 7 (𝑡 = 𝑛 → ((2nd𝐶)𝑁(2nd𝑡)) = ((2nd𝐶)𝑁(2nd𝑛)))
8382breq1d 4061 . . . . . 6 (𝑡 = 𝑛 → (((2nd𝐶)𝑁(2nd𝑡)) < 𝑅 ↔ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))
8480, 83anbi12d 473 . . . . 5 (𝑡 = 𝑛 → ((((1st𝐶)𝑀(1st𝑡)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑡)) < 𝑅) ↔ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)))
8584elrab 2933 . . . 4 (𝑛 ∈ {𝑡 ∈ (𝑋 × 𝑌) ∣ (((1st𝐶)𝑀(1st𝑡)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑡)) < 𝑅)} ↔ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)))
86 elxp6 6268 . . . 4 (𝑛 ∈ (((1st𝐶)(ball‘𝑀)𝑅) × ((2nd𝐶)(ball‘𝑁)𝑅)) ↔ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅))))
8777, 85, 863bitr4g 223 . . 3 (𝜑 → (𝑛 ∈ {𝑡 ∈ (𝑋 × 𝑌) ∣ (((1st𝐶)𝑀(1st𝑡)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑡)) < 𝑅)} ↔ 𝑛 ∈ (((1st𝐶)(ball‘𝑀)𝑅) × ((2nd𝐶)(ball‘𝑁)𝑅))))
8887eqrdv 2204 . 2 (𝜑 → {𝑡 ∈ (𝑋 × 𝑌) ∣ (((1st𝐶)𝑀(1st𝑡)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑡)) < 𝑅)} = (((1st𝐶)(ball‘𝑀)𝑅) × ((2nd𝐶)(ball‘𝑁)𝑅)))
898, 42, 883eqtrd 2243 1 (𝜑 → (𝐶(ball‘𝑃)𝑅) = (((1st𝐶)(ball‘𝑀)𝑅) × ((2nd𝐶)(ball‘𝑁)𝑅)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  {crab 2489  {cpr 3639  cop 3641   class class class wbr 4051   × cxp 4681  cfv 5280  (class class class)co 5957  cmpo 5959  1st c1st 6237  2nd c2nd 6238  supcsup 7099  *cxr 8126   < clt 8127  ∞Metcxmet 14373  ballcbl 14375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-isom 5289  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-map 6750  df-sup 7101  df-inf 7102  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-xneg 9914  df-xadd 9915  df-seqfrec 10615  df-exp 10706  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-topgen 13167  df-psmet 14380  df-xmet 14381  df-bl 14383  df-mopn 14384  df-top 14545  df-topon 14558  df-bases 14590
This theorem is referenced by:  xmettxlem  15056  xmettx  15057
  Copyright terms: Public domain W3C validator