ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetxpbl GIF version

Theorem xmetxpbl 14828
Description: The maximum metric (Chebyshev distance) on the product of two sets, expressed in terms of balls centered on a point 𝐶 with radius 𝑅. (Contributed by Jim Kingdon, 22-Oct-2023.)
Hypotheses
Ref Expression
xmetxp.p 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))}, ℝ*, < ))
xmetxp.1 (𝜑𝑀 ∈ (∞Met‘𝑋))
xmetxp.2 (𝜑𝑁 ∈ (∞Met‘𝑌))
xmetxpbl.r (𝜑𝑅 ∈ ℝ*)
xmetxpbl.c (𝜑𝐶 ∈ (𝑋 × 𝑌))
Assertion
Ref Expression
xmetxpbl (𝜑 → (𝐶(ball‘𝑃)𝑅) = (((1st𝐶)(ball‘𝑀)𝑅) × ((2nd𝐶)(ball‘𝑁)𝑅)))
Distinct variable groups:   𝑢,𝐶,𝑣   𝑢,𝑀,𝑣   𝑢,𝑁,𝑣   𝑢,𝑋,𝑣   𝑢,𝑌,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑢)   𝑃(𝑣,𝑢)   𝑅(𝑣,𝑢)

Proof of Theorem xmetxpbl
Dummy variables 𝑛 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetxp.p . . . 4 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))}, ℝ*, < ))
2 xmetxp.1 . . . 4 (𝜑𝑀 ∈ (∞Met‘𝑋))
3 xmetxp.2 . . . 4 (𝜑𝑁 ∈ (∞Met‘𝑌))
41, 2, 3xmetxp 14827 . . 3 (𝜑𝑃 ∈ (∞Met‘(𝑋 × 𝑌)))
5 xmetxpbl.c . . 3 (𝜑𝐶 ∈ (𝑋 × 𝑌))
6 xmetxpbl.r . . 3 (𝜑𝑅 ∈ ℝ*)
7 blval 14709 . . 3 ((𝑃 ∈ (∞Met‘(𝑋 × 𝑌)) ∧ 𝐶 ∈ (𝑋 × 𝑌) ∧ 𝑅 ∈ ℝ*) → (𝐶(ball‘𝑃)𝑅) = {𝑡 ∈ (𝑋 × 𝑌) ∣ (𝐶𝑃𝑡) < 𝑅})
84, 5, 6, 7syl3anc 1249 . 2 (𝜑 → (𝐶(ball‘𝑃)𝑅) = {𝑡 ∈ (𝑋 × 𝑌) ∣ (𝐶𝑃𝑡) < 𝑅})
95adantr 276 . . . . . 6 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → 𝐶 ∈ (𝑋 × 𝑌))
10 simpr 110 . . . . . 6 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → 𝑡 ∈ (𝑋 × 𝑌))
112adantr 276 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → 𝑀 ∈ (∞Met‘𝑋))
12 xp1st 6232 . . . . . . . . 9 (𝐶 ∈ (𝑋 × 𝑌) → (1st𝐶) ∈ 𝑋)
139, 12syl 14 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → (1st𝐶) ∈ 𝑋)
14 xp1st 6232 . . . . . . . . 9 (𝑡 ∈ (𝑋 × 𝑌) → (1st𝑡) ∈ 𝑋)
1514adantl 277 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → (1st𝑡) ∈ 𝑋)
16 xmetcl 14672 . . . . . . . 8 ((𝑀 ∈ (∞Met‘𝑋) ∧ (1st𝐶) ∈ 𝑋 ∧ (1st𝑡) ∈ 𝑋) → ((1st𝐶)𝑀(1st𝑡)) ∈ ℝ*)
1711, 13, 15, 16syl3anc 1249 . . . . . . 7 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → ((1st𝐶)𝑀(1st𝑡)) ∈ ℝ*)
183adantr 276 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → 𝑁 ∈ (∞Met‘𝑌))
19 xp2nd 6233 . . . . . . . . 9 (𝐶 ∈ (𝑋 × 𝑌) → (2nd𝐶) ∈ 𝑌)
209, 19syl 14 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → (2nd𝐶) ∈ 𝑌)
21 xp2nd 6233 . . . . . . . . 9 (𝑡 ∈ (𝑋 × 𝑌) → (2nd𝑡) ∈ 𝑌)
2221adantl 277 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → (2nd𝑡) ∈ 𝑌)
23 xmetcl 14672 . . . . . . . 8 ((𝑁 ∈ (∞Met‘𝑌) ∧ (2nd𝐶) ∈ 𝑌 ∧ (2nd𝑡) ∈ 𝑌) → ((2nd𝐶)𝑁(2nd𝑡)) ∈ ℝ*)
2418, 20, 22, 23syl3anc 1249 . . . . . . 7 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → ((2nd𝐶)𝑁(2nd𝑡)) ∈ ℝ*)
25 xrmaxcl 11434 . . . . . . 7 ((((1st𝐶)𝑀(1st𝑡)) ∈ ℝ* ∧ ((2nd𝐶)𝑁(2nd𝑡)) ∈ ℝ*) → sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ) ∈ ℝ*)
2617, 24, 25syl2anc 411 . . . . . 6 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ) ∈ ℝ*)
27 fveq2 5561 . . . . . . . . . 10 (𝑢 = 𝐶 → (1st𝑢) = (1st𝐶))
28 fveq2 5561 . . . . . . . . . 10 (𝑣 = 𝑡 → (1st𝑣) = (1st𝑡))
2927, 28oveqan12d 5944 . . . . . . . . 9 ((𝑢 = 𝐶𝑣 = 𝑡) → ((1st𝑢)𝑀(1st𝑣)) = ((1st𝐶)𝑀(1st𝑡)))
30 fveq2 5561 . . . . . . . . . 10 (𝑢 = 𝐶 → (2nd𝑢) = (2nd𝐶))
31 fveq2 5561 . . . . . . . . . 10 (𝑣 = 𝑡 → (2nd𝑣) = (2nd𝑡))
3230, 31oveqan12d 5944 . . . . . . . . 9 ((𝑢 = 𝐶𝑣 = 𝑡) → ((2nd𝑢)𝑁(2nd𝑣)) = ((2nd𝐶)𝑁(2nd𝑡)))
3329, 32preq12d 3708 . . . . . . . 8 ((𝑢 = 𝐶𝑣 = 𝑡) → {((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))} = {((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))})
3433supeq1d 7062 . . . . . . 7 ((𝑢 = 𝐶𝑣 = 𝑡) → sup({((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))}, ℝ*, < ) = sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ))
3534, 1ovmpoga 6056 . . . . . 6 ((𝐶 ∈ (𝑋 × 𝑌) ∧ 𝑡 ∈ (𝑋 × 𝑌) ∧ sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ) ∈ ℝ*) → (𝐶𝑃𝑡) = sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ))
369, 10, 26, 35syl3anc 1249 . . . . 5 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → (𝐶𝑃𝑡) = sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ))
3736breq1d 4044 . . . 4 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → ((𝐶𝑃𝑡) < 𝑅 ↔ sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ) < 𝑅))
386adantr 276 . . . . 5 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → 𝑅 ∈ ℝ*)
39 xrmaxltsup 11440 . . . . 5 ((((1st𝐶)𝑀(1st𝑡)) ∈ ℝ* ∧ ((2nd𝐶)𝑁(2nd𝑡)) ∈ ℝ*𝑅 ∈ ℝ*) → (sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ) < 𝑅 ↔ (((1st𝐶)𝑀(1st𝑡)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑡)) < 𝑅)))
4017, 24, 38, 39syl3anc 1249 . . . 4 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → (sup({((1st𝐶)𝑀(1st𝑡)), ((2nd𝐶)𝑁(2nd𝑡))}, ℝ*, < ) < 𝑅 ↔ (((1st𝐶)𝑀(1st𝑡)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑡)) < 𝑅)))
4137, 40bitrd 188 . . 3 ((𝜑𝑡 ∈ (𝑋 × 𝑌)) → ((𝐶𝑃𝑡) < 𝑅 ↔ (((1st𝐶)𝑀(1st𝑡)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑡)) < 𝑅)))
4241rabbidva 2751 . 2 (𝜑 → {𝑡 ∈ (𝑋 × 𝑌) ∣ (𝐶𝑃𝑡) < 𝑅} = {𝑡 ∈ (𝑋 × 𝑌) ∣ (((1st𝐶)𝑀(1st𝑡)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑡)) < 𝑅)})
43 1st2nd2 6242 . . . . . . 7 (𝑛 ∈ (𝑋 × 𝑌) → 𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩)
4443ad2antrl 490 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → 𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩)
45 xp1st 6232 . . . . . . . 8 (𝑛 ∈ (𝑋 × 𝑌) → (1st𝑛) ∈ 𝑋)
4645ad2antrl 490 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → (1st𝑛) ∈ 𝑋)
47 simprrl 539 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → ((1st𝐶)𝑀(1st𝑛)) < 𝑅)
485, 12syl 14 . . . . . . . . 9 (𝜑 → (1st𝐶) ∈ 𝑋)
49 elbl 14711 . . . . . . . . 9 ((𝑀 ∈ (∞Met‘𝑋) ∧ (1st𝐶) ∈ 𝑋𝑅 ∈ ℝ*) → ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ↔ ((1st𝑛) ∈ 𝑋 ∧ ((1st𝐶)𝑀(1st𝑛)) < 𝑅)))
502, 48, 6, 49syl3anc 1249 . . . . . . . 8 (𝜑 → ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ↔ ((1st𝑛) ∈ 𝑋 ∧ ((1st𝐶)𝑀(1st𝑛)) < 𝑅)))
5150adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ↔ ((1st𝑛) ∈ 𝑋 ∧ ((1st𝐶)𝑀(1st𝑛)) < 𝑅)))
5246, 47, 51mpbir2and 946 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → (1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅))
53 xp2nd 6233 . . . . . . . 8 (𝑛 ∈ (𝑋 × 𝑌) → (2nd𝑛) ∈ 𝑌)
5453ad2antrl 490 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → (2nd𝑛) ∈ 𝑌)
55 simprrr 540 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)
565, 19syl 14 . . . . . . . . 9 (𝜑 → (2nd𝐶) ∈ 𝑌)
57 elbl 14711 . . . . . . . . 9 ((𝑁 ∈ (∞Met‘𝑌) ∧ (2nd𝐶) ∈ 𝑌𝑅 ∈ ℝ*) → ((2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅) ↔ ((2nd𝑛) ∈ 𝑌 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)))
583, 56, 6, 57syl3anc 1249 . . . . . . . 8 (𝜑 → ((2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅) ↔ ((2nd𝑛) ∈ 𝑌 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)))
5958adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → ((2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅) ↔ ((2nd𝑛) ∈ 𝑌 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)))
6054, 55, 59mpbir2and 946 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅))
6144, 52, 60jca32 310 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))) → (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅))))
62 simprl 529 . . . . . . . 8 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → 𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩)
63 simprrl 539 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → (1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅))
6450adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ↔ ((1st𝑛) ∈ 𝑋 ∧ ((1st𝐶)𝑀(1st𝑛)) < 𝑅)))
6563, 64mpbid 147 . . . . . . . . 9 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → ((1st𝑛) ∈ 𝑋 ∧ ((1st𝐶)𝑀(1st𝑛)) < 𝑅))
6665simpld 112 . . . . . . . 8 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → (1st𝑛) ∈ 𝑋)
67 simprrr 540 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅))
6858adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → ((2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅) ↔ ((2nd𝑛) ∈ 𝑌 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)))
6967, 68mpbid 147 . . . . . . . . 9 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → ((2nd𝑛) ∈ 𝑌 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))
7069simpld 112 . . . . . . . 8 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → (2nd𝑛) ∈ 𝑌)
7162, 66, 70jca32 310 . . . . . . 7 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ 𝑋 ∧ (2nd𝑛) ∈ 𝑌)))
72 elxp6 6236 . . . . . . 7 (𝑛 ∈ (𝑋 × 𝑌) ↔ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ 𝑋 ∧ (2nd𝑛) ∈ 𝑌)))
7371, 72sylibr 134 . . . . . 6 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → 𝑛 ∈ (𝑋 × 𝑌))
7465simprd 114 . . . . . 6 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → ((1st𝐶)𝑀(1st𝑛)) < 𝑅)
7569simprd 114 . . . . . 6 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)
7673, 74, 75jca32 310 . . . . 5 ((𝜑 ∧ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))) → (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)))
7761, 76impbida 596 . . . 4 (𝜑 → ((𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)) ↔ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅)))))
78 fveq2 5561 . . . . . . . 8 (𝑡 = 𝑛 → (1st𝑡) = (1st𝑛))
7978oveq2d 5941 . . . . . . 7 (𝑡 = 𝑛 → ((1st𝐶)𝑀(1st𝑡)) = ((1st𝐶)𝑀(1st𝑛)))
8079breq1d 4044 . . . . . 6 (𝑡 = 𝑛 → (((1st𝐶)𝑀(1st𝑡)) < 𝑅 ↔ ((1st𝐶)𝑀(1st𝑛)) < 𝑅))
81 fveq2 5561 . . . . . . . 8 (𝑡 = 𝑛 → (2nd𝑡) = (2nd𝑛))
8281oveq2d 5941 . . . . . . 7 (𝑡 = 𝑛 → ((2nd𝐶)𝑁(2nd𝑡)) = ((2nd𝐶)𝑁(2nd𝑛)))
8382breq1d 4044 . . . . . 6 (𝑡 = 𝑛 → (((2nd𝐶)𝑁(2nd𝑡)) < 𝑅 ↔ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅))
8480, 83anbi12d 473 . . . . 5 (𝑡 = 𝑛 → ((((1st𝐶)𝑀(1st𝑡)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑡)) < 𝑅) ↔ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)))
8584elrab 2920 . . . 4 (𝑛 ∈ {𝑡 ∈ (𝑋 × 𝑌) ∣ (((1st𝐶)𝑀(1st𝑡)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑡)) < 𝑅)} ↔ (𝑛 ∈ (𝑋 × 𝑌) ∧ (((1st𝐶)𝑀(1st𝑛)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑛)) < 𝑅)))
86 elxp6 6236 . . . 4 (𝑛 ∈ (((1st𝐶)(ball‘𝑀)𝑅) × ((2nd𝐶)(ball‘𝑁)𝑅)) ↔ (𝑛 = ⟨(1st𝑛), (2nd𝑛)⟩ ∧ ((1st𝑛) ∈ ((1st𝐶)(ball‘𝑀)𝑅) ∧ (2nd𝑛) ∈ ((2nd𝐶)(ball‘𝑁)𝑅))))
8777, 85, 863bitr4g 223 . . 3 (𝜑 → (𝑛 ∈ {𝑡 ∈ (𝑋 × 𝑌) ∣ (((1st𝐶)𝑀(1st𝑡)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑡)) < 𝑅)} ↔ 𝑛 ∈ (((1st𝐶)(ball‘𝑀)𝑅) × ((2nd𝐶)(ball‘𝑁)𝑅))))
8887eqrdv 2194 . 2 (𝜑 → {𝑡 ∈ (𝑋 × 𝑌) ∣ (((1st𝐶)𝑀(1st𝑡)) < 𝑅 ∧ ((2nd𝐶)𝑁(2nd𝑡)) < 𝑅)} = (((1st𝐶)(ball‘𝑀)𝑅) × ((2nd𝐶)(ball‘𝑁)𝑅)))
898, 42, 883eqtrd 2233 1 (𝜑 → (𝐶(ball‘𝑃)𝑅) = (((1st𝐶)(ball‘𝑀)𝑅) × ((2nd𝐶)(ball‘𝑁)𝑅)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  {crab 2479  {cpr 3624  cop 3626   class class class wbr 4034   × cxp 4662  cfv 5259  (class class class)co 5925  cmpo 5927  1st c1st 6205  2nd c2nd 6206  supcsup 7057  *cxr 8077   < clt 8078  ∞Metcxmet 14168  ballcbl 14170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-map 6718  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-xneg 9864  df-xadd 9865  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-topgen 12962  df-psmet 14175  df-xmet 14176  df-bl 14178  df-mopn 14179  df-top 14318  df-topon 14331  df-bases 14363
This theorem is referenced by:  xmettxlem  14829  xmettx  14830
  Copyright terms: Public domain W3C validator