![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sqrt0rlem | GIF version |
Description: Lemma for sqrt0 11032. (Contributed by Jim Kingdon, 26-Aug-2020.) |
Ref | Expression |
---|---|
sqrt0rlem | ⊢ ((𝐴 ∈ ℝ ∧ ((𝐴↑2) = 0 ∧ 0 ≤ 𝐴)) ↔ 𝐴 = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn 7963 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
2 | sqeq0 10602 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) = 0 ↔ 𝐴 = 0)) | |
3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((𝐴↑2) = 0 ↔ 𝐴 = 0)) |
4 | 3 | biimpa 296 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (𝐴↑2) = 0) → 𝐴 = 0) |
5 | 4 | adantrr 479 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ ((𝐴↑2) = 0 ∧ 0 ≤ 𝐴)) → 𝐴 = 0) |
6 | 0re 7976 | . . . 4 ⊢ 0 ∈ ℝ | |
7 | eleq1 2252 | . . . 4 ⊢ (𝐴 = 0 → (𝐴 ∈ ℝ ↔ 0 ∈ ℝ)) | |
8 | 6, 7 | mpbiri 168 | . . 3 ⊢ (𝐴 = 0 → 𝐴 ∈ ℝ) |
9 | sq0i 10631 | . . 3 ⊢ (𝐴 = 0 → (𝐴↑2) = 0) | |
10 | 0le0 9027 | . . . 4 ⊢ 0 ≤ 0 | |
11 | breq2 4022 | . . . 4 ⊢ (𝐴 = 0 → (0 ≤ 𝐴 ↔ 0 ≤ 0)) | |
12 | 10, 11 | mpbiri 168 | . . 3 ⊢ (𝐴 = 0 → 0 ≤ 𝐴) |
13 | 8, 9, 12 | jca32 310 | . 2 ⊢ (𝐴 = 0 → (𝐴 ∈ ℝ ∧ ((𝐴↑2) = 0 ∧ 0 ≤ 𝐴))) |
14 | 5, 13 | impbii 126 | 1 ⊢ ((𝐴 ∈ ℝ ∧ ((𝐴↑2) = 0 ∧ 0 ≤ 𝐴)) ↔ 𝐴 = 0) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2160 class class class wbr 4018 (class class class)co 5891 ℂcc 7828 ℝcr 7829 0cc0 7830 ≤ cle 8012 2c2 8989 ↑cexp 10538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-iinf 4602 ax-cnex 7921 ax-resscn 7922 ax-1cn 7923 ax-1re 7924 ax-icn 7925 ax-addcl 7926 ax-addrcl 7927 ax-mulcl 7928 ax-mulrcl 7929 ax-addcom 7930 ax-mulcom 7931 ax-addass 7932 ax-mulass 7933 ax-distr 7934 ax-i2m1 7935 ax-0lt1 7936 ax-1rid 7937 ax-0id 7938 ax-rnegex 7939 ax-precex 7940 ax-cnre 7941 ax-pre-ltirr 7942 ax-pre-ltwlin 7943 ax-pre-lttrn 7944 ax-pre-apti 7945 ax-pre-ltadd 7946 ax-pre-mulgt0 7947 ax-pre-mulext 7948 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4308 df-po 4311 df-iso 4312 df-iord 4381 df-on 4383 df-ilim 4384 df-suc 4386 df-iom 4605 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5233 df-fn 5234 df-f 5235 df-f1 5236 df-fo 5237 df-f1o 5238 df-fv 5239 df-riota 5847 df-ov 5894 df-oprab 5895 df-mpo 5896 df-1st 6159 df-2nd 6160 df-recs 6324 df-frec 6410 df-pnf 8013 df-mnf 8014 df-xr 8015 df-ltxr 8016 df-le 8017 df-sub 8149 df-neg 8150 df-reap 8551 df-ap 8558 df-div 8649 df-inn 8939 df-2 8997 df-n0 9196 df-z 9273 df-uz 9548 df-seqfrec 10465 df-exp 10539 |
This theorem is referenced by: sqrt0 11032 |
Copyright terms: Public domain | W3C validator |