ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemlol GIF version

Theorem ltexprlemlol 7543
Description: The lower cut of our constructed difference is lower. Lemma for ltexpri 7554. (Contributed by Jim Kingdon, 21-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
Assertion
Ref Expression
ltexprlemlol ((𝐴<P 𝐵𝑞Q) → (∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)) → 𝑞 ∈ (1st𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑞,𝑟,𝐴   𝑥,𝐵,𝑦,𝑞,𝑟   𝑥,𝐶,𝑦,𝑞,𝑟

Proof of Theorem ltexprlemlol
StepHypRef Expression
1 simplr 520 . . . . . 6 (((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))) → 𝑞Q)
2 simprrr 530 . . . . . . 7 (((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))) → (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))
32simpld 111 . . . . . 6 (((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))) → 𝑦 ∈ (2nd𝐴))
4 simprl 521 . . . . . . . 8 (((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))) → 𝑞 <Q 𝑟)
5 simpll 519 . . . . . . . . 9 (((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))) → 𝐴<P 𝐵)
6 ltrelpr 7446 . . . . . . . . . . . 12 <P ⊆ (P × P)
76brel 4656 . . . . . . . . . . 11 (𝐴<P 𝐵 → (𝐴P𝐵P))
87simpld 111 . . . . . . . . . 10 (𝐴<P 𝐵𝐴P)
9 prop 7416 . . . . . . . . . . 11 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
10 elprnqu 7423 . . . . . . . . . . 11 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
119, 10sylan 281 . . . . . . . . . 10 ((𝐴P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
128, 11sylan 281 . . . . . . . . 9 ((𝐴<P 𝐵𝑦 ∈ (2nd𝐴)) → 𝑦Q)
135, 3, 12syl2anc 409 . . . . . . . 8 (((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))) → 𝑦Q)
14 ltanqi 7343 . . . . . . . 8 ((𝑞 <Q 𝑟𝑦Q) → (𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟))
154, 13, 14syl2anc 409 . . . . . . 7 (((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))) → (𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟))
167simprd 113 . . . . . . . . 9 (𝐴<P 𝐵𝐵P)
175, 16syl 14 . . . . . . . 8 (((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))) → 𝐵P)
182simprd 113 . . . . . . . 8 (((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))) → (𝑦 +Q 𝑟) ∈ (1st𝐵))
19 prop 7416 . . . . . . . . 9 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
20 prcdnql 7425 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)) → ((𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟) → (𝑦 +Q 𝑞) ∈ (1st𝐵)))
2119, 20sylan 281 . . . . . . . 8 ((𝐵P ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)) → ((𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟) → (𝑦 +Q 𝑞) ∈ (1st𝐵)))
2217, 18, 21syl2anc 409 . . . . . . 7 (((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))) → ((𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟) → (𝑦 +Q 𝑞) ∈ (1st𝐵)))
2315, 22mpd 13 . . . . . 6 (((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))) → (𝑦 +Q 𝑞) ∈ (1st𝐵))
241, 3, 23jca32 308 . . . . 5 (((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))) → (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
2524eximi 1588 . . . 4 (∃𝑦((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))) → ∃𝑦(𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
26 ltexprlem.1 . . . . . . . . . 10 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
2726ltexprlemell 7539 . . . . . . . . 9 (𝑟 ∈ (1st𝐶) ↔ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))
28 19.42v 1894 . . . . . . . . 9 (∃𝑦(𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))) ↔ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))
2927, 28bitr4i 186 . . . . . . . 8 (𝑟 ∈ (1st𝐶) ↔ ∃𝑦(𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))
3029anbi2i 453 . . . . . . 7 ((𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)) ↔ (𝑞 <Q 𝑟 ∧ ∃𝑦(𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
31 19.42v 1894 . . . . . . 7 (∃𝑦(𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))) ↔ (𝑞 <Q 𝑟 ∧ ∃𝑦(𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
3230, 31bitr4i 186 . . . . . 6 ((𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)) ↔ ∃𝑦(𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
3332anbi2i 453 . . . . 5 (((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶))) ↔ ((𝐴<P 𝐵𝑞Q) ∧ ∃𝑦(𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))))
34 19.42v 1894 . . . . 5 (∃𝑦((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))) ↔ ((𝐴<P 𝐵𝑞Q) ∧ ∃𝑦(𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))))
3533, 34bitr4i 186 . . . 4 (((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶))) ↔ ∃𝑦((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))))
3626ltexprlemell 7539 . . . . 5 (𝑞 ∈ (1st𝐶) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
37 19.42v 1894 . . . . 5 (∃𝑦(𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
3836, 37bitr4i 186 . . . 4 (𝑞 ∈ (1st𝐶) ↔ ∃𝑦(𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
3925, 35, 383imtr4i 200 . . 3 (((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶))) → 𝑞 ∈ (1st𝐶))
4039ex 114 . 2 ((𝐴<P 𝐵𝑞Q) → ((𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)) → 𝑞 ∈ (1st𝐶)))
4140rexlimdvw 2587 1 ((𝐴<P 𝐵𝑞Q) → (∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)) → 𝑞 ∈ (1st𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wex 1480  wcel 2136  wrex 2445  {crab 2448  cop 3579   class class class wbr 3982  cfv 5188  (class class class)co 5842  1st c1st 6106  2nd c2nd 6107  Qcnq 7221   +Q cplq 7223   <Q cltq 7226  Pcnp 7232  <P cltp 7236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-ltnqqs 7294  df-inp 7407  df-iltp 7411
This theorem is referenced by:  ltexprlemrnd  7546
  Copyright terms: Public domain W3C validator