ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemlol GIF version

Theorem ltexprlemlol 7505
Description: The lower cut of our constructed difference is lower. Lemma for ltexpri 7516. (Contributed by Jim Kingdon, 21-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
Assertion
Ref Expression
ltexprlemlol ((𝐴<P 𝐵𝑞Q) → (∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)) → 𝑞 ∈ (1st𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑞,𝑟,𝐴   𝑥,𝐵,𝑦,𝑞,𝑟   𝑥,𝐶,𝑦,𝑞,𝑟

Proof of Theorem ltexprlemlol
StepHypRef Expression
1 simplr 520 . . . . . 6 (((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))) → 𝑞Q)
2 simprrr 530 . . . . . . 7 (((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))) → (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))
32simpld 111 . . . . . 6 (((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))) → 𝑦 ∈ (2nd𝐴))
4 simprl 521 . . . . . . . 8 (((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))) → 𝑞 <Q 𝑟)
5 simpll 519 . . . . . . . . 9 (((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))) → 𝐴<P 𝐵)
6 ltrelpr 7408 . . . . . . . . . . . 12 <P ⊆ (P × P)
76brel 4635 . . . . . . . . . . 11 (𝐴<P 𝐵 → (𝐴P𝐵P))
87simpld 111 . . . . . . . . . 10 (𝐴<P 𝐵𝐴P)
9 prop 7378 . . . . . . . . . . 11 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
10 elprnqu 7385 . . . . . . . . . . 11 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
119, 10sylan 281 . . . . . . . . . 10 ((𝐴P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
128, 11sylan 281 . . . . . . . . 9 ((𝐴<P 𝐵𝑦 ∈ (2nd𝐴)) → 𝑦Q)
135, 3, 12syl2anc 409 . . . . . . . 8 (((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))) → 𝑦Q)
14 ltanqi 7305 . . . . . . . 8 ((𝑞 <Q 𝑟𝑦Q) → (𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟))
154, 13, 14syl2anc 409 . . . . . . 7 (((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))) → (𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟))
167simprd 113 . . . . . . . . 9 (𝐴<P 𝐵𝐵P)
175, 16syl 14 . . . . . . . 8 (((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))) → 𝐵P)
182simprd 113 . . . . . . . 8 (((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))) → (𝑦 +Q 𝑟) ∈ (1st𝐵))
19 prop 7378 . . . . . . . . 9 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
20 prcdnql 7387 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)) → ((𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟) → (𝑦 +Q 𝑞) ∈ (1st𝐵)))
2119, 20sylan 281 . . . . . . . 8 ((𝐵P ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)) → ((𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟) → (𝑦 +Q 𝑞) ∈ (1st𝐵)))
2217, 18, 21syl2anc 409 . . . . . . 7 (((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))) → ((𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟) → (𝑦 +Q 𝑞) ∈ (1st𝐵)))
2315, 22mpd 13 . . . . . 6 (((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))) → (𝑦 +Q 𝑞) ∈ (1st𝐵))
241, 3, 23jca32 308 . . . . 5 (((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))) → (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
2524eximi 1580 . . . 4 (∃𝑦((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))) → ∃𝑦(𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
26 ltexprlem.1 . . . . . . . . . 10 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
2726ltexprlemell 7501 . . . . . . . . 9 (𝑟 ∈ (1st𝐶) ↔ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))
28 19.42v 1886 . . . . . . . . 9 (∃𝑦(𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))) ↔ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))
2927, 28bitr4i 186 . . . . . . . 8 (𝑟 ∈ (1st𝐶) ↔ ∃𝑦(𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))
3029anbi2i 453 . . . . . . 7 ((𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)) ↔ (𝑞 <Q 𝑟 ∧ ∃𝑦(𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
31 19.42v 1886 . . . . . . 7 (∃𝑦(𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))) ↔ (𝑞 <Q 𝑟 ∧ ∃𝑦(𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
3230, 31bitr4i 186 . . . . . 6 ((𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)) ↔ ∃𝑦(𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
3332anbi2i 453 . . . . 5 (((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶))) ↔ ((𝐴<P 𝐵𝑞Q) ∧ ∃𝑦(𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))))
34 19.42v 1886 . . . . 5 (∃𝑦((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))) ↔ ((𝐴<P 𝐵𝑞Q) ∧ ∃𝑦(𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))))
3533, 34bitr4i 186 . . . 4 (((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶))) ↔ ∃𝑦((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))))
3626ltexprlemell 7501 . . . . 5 (𝑞 ∈ (1st𝐶) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
37 19.42v 1886 . . . . 5 (∃𝑦(𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
3836, 37bitr4i 186 . . . 4 (𝑞 ∈ (1st𝐶) ↔ ∃𝑦(𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
3925, 35, 383imtr4i 200 . . 3 (((𝐴<P 𝐵𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶))) → 𝑞 ∈ (1st𝐶))
4039ex 114 . 2 ((𝐴<P 𝐵𝑞Q) → ((𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)) → 𝑞 ∈ (1st𝐶)))
4140rexlimdvw 2578 1 ((𝐴<P 𝐵𝑞Q) → (∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)) → 𝑞 ∈ (1st𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1335  wex 1472  wcel 2128  wrex 2436  {crab 2439  cop 3563   class class class wbr 3965  cfv 5167  (class class class)co 5818  1st c1st 6080  2nd c2nd 6081  Qcnq 7183   +Q cplq 7185   <Q cltq 7188  Pcnp 7194  <P cltp 7198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-eprel 4248  df-id 4252  df-iord 4325  df-on 4327  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-recs 6246  df-irdg 6311  df-oadd 6361  df-omul 6362  df-er 6473  df-ec 6475  df-qs 6479  df-ni 7207  df-pli 7208  df-mi 7209  df-lti 7210  df-plpq 7247  df-enq 7250  df-nqqs 7251  df-plqqs 7252  df-ltnqqs 7256  df-inp 7369  df-iltp 7373
This theorem is referenced by:  ltexprlemrnd  7508
  Copyright terms: Public domain W3C validator