ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzass4 GIF version

Theorem fzass4 10184
Description: Two ways to express a nondecreasing sequence of four integers. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
fzass4 ((𝐵 ∈ (𝐴...𝐷) ∧ 𝐶 ∈ (𝐵...𝐷)) ↔ (𝐵 ∈ (𝐴...𝐶) ∧ 𝐶 ∈ (𝐴...𝐷)))

Proof of Theorem fzass4
StepHypRef Expression
1 simpll 527 . . . . 5 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐵 ∈ (ℤ𝐴))
2 simprl 529 . . . . 5 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐶 ∈ (ℤ𝐵))
31, 2jca 306 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) → (𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)))
4 uztrn 9665 . . . . . 6 ((𝐶 ∈ (ℤ𝐵) ∧ 𝐵 ∈ (ℤ𝐴)) → 𝐶 ∈ (ℤ𝐴))
54ancoms 268 . . . . 5 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) → 𝐶 ∈ (ℤ𝐴))
65ad2ant2r 509 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐶 ∈ (ℤ𝐴))
7 simprr 531 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐷 ∈ (ℤ𝐶))
83, 6, 7jca32 310 . . 3 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) → ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))))
9 simpll 527 . . . . 5 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐵 ∈ (ℤ𝐴))
10 uztrn 9665 . . . . . . 7 ((𝐷 ∈ (ℤ𝐶) ∧ 𝐶 ∈ (ℤ𝐵)) → 𝐷 ∈ (ℤ𝐵))
1110ancoms 268 . . . . . 6 ((𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶)) → 𝐷 ∈ (ℤ𝐵))
1211ad2ant2l 508 . . . . 5 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐷 ∈ (ℤ𝐵))
139, 12jca 306 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))) → (𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)))
14 simplr 528 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐶 ∈ (ℤ𝐵))
15 simprr 531 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐷 ∈ (ℤ𝐶))
1613, 14, 15jca32 310 . . 3 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))) → ((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))))
178, 16impbii 126 . 2 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) ↔ ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))))
18 elfzuzb 10141 . . 3 (𝐵 ∈ (𝐴...𝐷) ↔ (𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)))
19 elfzuzb 10141 . . 3 (𝐶 ∈ (𝐵...𝐷) ↔ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶)))
2018, 19anbi12i 460 . 2 ((𝐵 ∈ (𝐴...𝐷) ∧ 𝐶 ∈ (𝐵...𝐷)) ↔ ((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))))
21 elfzuzb 10141 . . 3 (𝐵 ∈ (𝐴...𝐶) ↔ (𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)))
22 elfzuzb 10141 . . 3 (𝐶 ∈ (𝐴...𝐷) ↔ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶)))
2321, 22anbi12i 460 . 2 ((𝐵 ∈ (𝐴...𝐶) ∧ 𝐶 ∈ (𝐴...𝐷)) ↔ ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))))
2417, 20, 233bitr4i 212 1 ((𝐵 ∈ (𝐴...𝐷) ∧ 𝐶 ∈ (𝐵...𝐷)) ↔ (𝐵 ∈ (𝐴...𝐶) ∧ 𝐶 ∈ (𝐴...𝐷)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wcel 2176  cfv 5271  (class class class)co 5944  cuz 9648  ...cfz 10130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-pre-ltwlin 8038
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-neg 8246  df-z 9373  df-uz 9649  df-fz 10131
This theorem is referenced by:  ccatswrd  11123
  Copyright terms: Public domain W3C validator