Proof of Theorem fzass4
| Step | Hyp | Ref
| Expression |
| 1 | | simpll 527 |
. . . . 5
⊢ (((𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐵) ∧ 𝐷 ∈ (ℤ≥‘𝐶))) → 𝐵 ∈ (ℤ≥‘𝐴)) |
| 2 | | simprl 529 |
. . . . 5
⊢ (((𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐵) ∧ 𝐷 ∈ (ℤ≥‘𝐶))) → 𝐶 ∈ (ℤ≥‘𝐵)) |
| 3 | 1, 2 | jca 306 |
. . . 4
⊢ (((𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐵) ∧ 𝐷 ∈ (ℤ≥‘𝐶))) → (𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ (ℤ≥‘𝐵))) |
| 4 | | uztrn 9618 |
. . . . . 6
⊢ ((𝐶 ∈
(ℤ≥‘𝐵) ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → 𝐶 ∈ (ℤ≥‘𝐴)) |
| 5 | 4 | ancoms 268 |
. . . . 5
⊢ ((𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐶 ∈ (ℤ≥‘𝐵)) → 𝐶 ∈ (ℤ≥‘𝐴)) |
| 6 | 5 | ad2ant2r 509 |
. . . 4
⊢ (((𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐵) ∧ 𝐷 ∈ (ℤ≥‘𝐶))) → 𝐶 ∈ (ℤ≥‘𝐴)) |
| 7 | | simprr 531 |
. . . 4
⊢ (((𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐵) ∧ 𝐷 ∈ (ℤ≥‘𝐶))) → 𝐷 ∈ (ℤ≥‘𝐶)) |
| 8 | 3, 6, 7 | jca32 310 |
. . 3
⊢ (((𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐵) ∧ 𝐷 ∈ (ℤ≥‘𝐶))) → ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐶)))) |
| 9 | | simpll 527 |
. . . . 5
⊢ (((𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐶 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐶))) → 𝐵 ∈ (ℤ≥‘𝐴)) |
| 10 | | uztrn 9618 |
. . . . . . 7
⊢ ((𝐷 ∈
(ℤ≥‘𝐶) ∧ 𝐶 ∈ (ℤ≥‘𝐵)) → 𝐷 ∈ (ℤ≥‘𝐵)) |
| 11 | 10 | ancoms 268 |
. . . . . 6
⊢ ((𝐶 ∈
(ℤ≥‘𝐵) ∧ 𝐷 ∈ (ℤ≥‘𝐶)) → 𝐷 ∈ (ℤ≥‘𝐵)) |
| 12 | 11 | ad2ant2l 508 |
. . . . 5
⊢ (((𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐶 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐶))) → 𝐷 ∈ (ℤ≥‘𝐵)) |
| 13 | 9, 12 | jca 306 |
. . . 4
⊢ (((𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐶 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐶))) → (𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐵))) |
| 14 | | simplr 528 |
. . . 4
⊢ (((𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐶 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐶))) → 𝐶 ∈ (ℤ≥‘𝐵)) |
| 15 | | simprr 531 |
. . . 4
⊢ (((𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐶 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐶))) → 𝐷 ∈ (ℤ≥‘𝐶)) |
| 16 | 13, 14, 15 | jca32 310 |
. . 3
⊢ (((𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐶 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐶))) → ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐵) ∧ 𝐷 ∈ (ℤ≥‘𝐶)))) |
| 17 | 8, 16 | impbii 126 |
. 2
⊢ (((𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐵) ∧ 𝐷 ∈ (ℤ≥‘𝐶))) ↔ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐶)))) |
| 18 | | elfzuzb 10094 |
. . 3
⊢ (𝐵 ∈ (𝐴...𝐷) ↔ (𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐵))) |
| 19 | | elfzuzb 10094 |
. . 3
⊢ (𝐶 ∈ (𝐵...𝐷) ↔ (𝐶 ∈ (ℤ≥‘𝐵) ∧ 𝐷 ∈ (ℤ≥‘𝐶))) |
| 20 | 18, 19 | anbi12i 460 |
. 2
⊢ ((𝐵 ∈ (𝐴...𝐷) ∧ 𝐶 ∈ (𝐵...𝐷)) ↔ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐵) ∧ 𝐷 ∈ (ℤ≥‘𝐶)))) |
| 21 | | elfzuzb 10094 |
. . 3
⊢ (𝐵 ∈ (𝐴...𝐶) ↔ (𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ (ℤ≥‘𝐵))) |
| 22 | | elfzuzb 10094 |
. . 3
⊢ (𝐶 ∈ (𝐴...𝐷) ↔ (𝐶 ∈ (ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐶))) |
| 23 | 21, 22 | anbi12i 460 |
. 2
⊢ ((𝐵 ∈ (𝐴...𝐶) ∧ 𝐶 ∈ (𝐴...𝐷)) ↔ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐶)))) |
| 24 | 17, 20, 23 | 3bitr4i 212 |
1
⊢ ((𝐵 ∈ (𝐴...𝐷) ∧ 𝐶 ∈ (𝐵...𝐷)) ↔ (𝐵 ∈ (𝐴...𝐶) ∧ 𝐶 ∈ (𝐴...𝐷))) |