Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elun2 | GIF version |
Description: Membership law for union of classes. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
elun2 | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐶 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 3297 | . 2 ⊢ 𝐵 ⊆ (𝐶 ∪ 𝐵) | |
2 | 1 | sseli 3149 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐶 ∪ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2146 ∪ cun 3125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 |
This theorem is referenced by: dcun 3531 exmidundif 4201 exmidundifim 4202 dftpos4 6254 tfrlemibxssdm 6318 tfrlemi14d 6324 tfr1onlembxssdm 6334 tfr1onlemres 6340 tfrcllembxssdm 6347 tfrcllemres 6353 dcdifsnid 6495 findcard2d 6881 findcard2sd 6882 onunsnss 6906 undifdcss 6912 fisseneq 6921 fidcenumlemrks 6942 djurclr 7039 djurcl 7041 djuss 7059 finomni 7128 mnfxr 7988 hashinfuni 10723 fsumsplitsnun 11393 sumsplitdc 11406 modfsummodlem1 11430 exmidunben 12392 srnginvld 12555 lmodvscad 12569 ipsscad 12577 ipsvscad 12578 ipsipd 12579 |
Copyright terms: Public domain | W3C validator |