| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elun2 | GIF version | ||
| Description: Membership law for union of classes. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| elun2 | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐶 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 3368 | . 2 ⊢ 𝐵 ⊆ (𝐶 ∪ 𝐵) | |
| 2 | 1 | sseli 3220 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐶 ∪ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ∪ cun 3195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 |
| This theorem is referenced by: dcun 3601 exmidundif 4289 exmidundifim 4290 dftpos4 6407 tfrlemibxssdm 6471 tfrlemi14d 6477 tfr1onlembxssdm 6487 tfr1onlemres 6493 tfrcllembxssdm 6500 tfrcllemres 6506 dcdifsnid 6648 findcard2d 7049 findcard2sd 7050 onunsnss 7075 undifdcss 7081 fisseneq 7092 fidcenumlemrks 7116 djurclr 7213 djurcl 7215 djuss 7233 finomni 7303 mnfxr 8199 hashinfuni 10994 fsumsplitsnun 11925 sumsplitdc 11938 modfsummodlem1 11962 exmidunben 12992 bassetsnn 13084 srnginvld 13178 lmodvscad 13196 ipsscad 13208 ipsvscad 13209 ipsipd 13210 |
| Copyright terms: Public domain | W3C validator |