ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elun2 GIF version

Theorem elun2 3331
Description: Membership law for union of classes. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
elun2 (𝐴𝐵𝐴 ∈ (𝐶𝐵))

Proof of Theorem elun2
StepHypRef Expression
1 ssun2 3327 . 2 𝐵 ⊆ (𝐶𝐵)
21sseli 3179 1 (𝐴𝐵𝐴 ∈ (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  cun 3155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170
This theorem is referenced by:  dcun  3560  exmidundif  4239  exmidundifim  4240  dftpos4  6321  tfrlemibxssdm  6385  tfrlemi14d  6391  tfr1onlembxssdm  6401  tfr1onlemres  6407  tfrcllembxssdm  6414  tfrcllemres  6420  dcdifsnid  6562  findcard2d  6952  findcard2sd  6953  onunsnss  6978  undifdcss  6984  fisseneq  6995  fidcenumlemrks  7019  djurclr  7116  djurcl  7118  djuss  7136  finomni  7206  mnfxr  8083  hashinfuni  10869  fsumsplitsnun  11584  sumsplitdc  11597  modfsummodlem1  11621  exmidunben  12643  srnginvld  12827  lmodvscad  12845  ipsscad  12857  ipsvscad  12858  ipsipd  12859
  Copyright terms: Public domain W3C validator