ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elun2 GIF version

Theorem elun2 3345
Description: Membership law for union of classes. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
elun2 (𝐴𝐵𝐴 ∈ (𝐶𝐵))

Proof of Theorem elun2
StepHypRef Expression
1 ssun2 3341 . 2 𝐵 ⊆ (𝐶𝐵)
21sseli 3193 1 (𝐴𝐵𝐴 ∈ (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177  cun 3168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-in 3176  df-ss 3183
This theorem is referenced by:  dcun  3574  exmidundif  4258  exmidundifim  4259  dftpos4  6362  tfrlemibxssdm  6426  tfrlemi14d  6432  tfr1onlembxssdm  6442  tfr1onlemres  6448  tfrcllembxssdm  6455  tfrcllemres  6461  dcdifsnid  6603  findcard2d  7003  findcard2sd  7004  onunsnss  7029  undifdcss  7035  fisseneq  7046  fidcenumlemrks  7070  djurclr  7167  djurcl  7169  djuss  7187  finomni  7257  mnfxr  8149  hashinfuni  10944  fsumsplitsnun  11805  sumsplitdc  11818  modfsummodlem1  11842  exmidunben  12872  srnginvld  13057  lmodvscad  13075  ipsscad  13087  ipsvscad  13088  ipsipd  13089
  Copyright terms: Public domain W3C validator