| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elun2 | GIF version | ||
| Description: Membership law for union of classes. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| elun2 | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐶 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 3341 | . 2 ⊢ 𝐵 ⊆ (𝐶 ∪ 𝐵) | |
| 2 | 1 | sseli 3193 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐶 ∪ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ∪ cun 3168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 |
| This theorem is referenced by: dcun 3574 exmidundif 4258 exmidundifim 4259 dftpos4 6362 tfrlemibxssdm 6426 tfrlemi14d 6432 tfr1onlembxssdm 6442 tfr1onlemres 6448 tfrcllembxssdm 6455 tfrcllemres 6461 dcdifsnid 6603 findcard2d 7003 findcard2sd 7004 onunsnss 7029 undifdcss 7035 fisseneq 7046 fidcenumlemrks 7070 djurclr 7167 djurcl 7169 djuss 7187 finomni 7257 mnfxr 8149 hashinfuni 10944 fsumsplitsnun 11805 sumsplitdc 11818 modfsummodlem1 11842 exmidunben 12872 srnginvld 13057 lmodvscad 13075 ipsscad 13087 ipsvscad 13088 ipsipd 13089 |
| Copyright terms: Public domain | W3C validator |