ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elun2 GIF version

Theorem elun2 3372
Description: Membership law for union of classes. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
elun2 (𝐴𝐵𝐴 ∈ (𝐶𝐵))

Proof of Theorem elun2
StepHypRef Expression
1 ssun2 3368 . 2 𝐵 ⊆ (𝐶𝐵)
21sseli 3220 1 (𝐴𝐵𝐴 ∈ (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  cun 3195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210
This theorem is referenced by:  dcun  3601  exmidundif  4289  exmidundifim  4290  dftpos4  6407  tfrlemibxssdm  6471  tfrlemi14d  6477  tfr1onlembxssdm  6487  tfr1onlemres  6493  tfrcllembxssdm  6500  tfrcllemres  6506  dcdifsnid  6648  findcard2d  7049  findcard2sd  7050  onunsnss  7075  undifdcss  7081  fisseneq  7092  fidcenumlemrks  7116  djurclr  7213  djurcl  7215  djuss  7233  finomni  7303  mnfxr  8199  hashinfuni  10994  fsumsplitsnun  11925  sumsplitdc  11938  modfsummodlem1  11962  exmidunben  12992  bassetsnn  13084  srnginvld  13178  lmodvscad  13196  ipsscad  13208  ipsvscad  13209  ipsipd  13210
  Copyright terms: Public domain W3C validator