ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elun2 GIF version

Theorem elun2 3305
Description: Membership law for union of classes. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
elun2 (𝐴𝐵𝐴 ∈ (𝐶𝐵))

Proof of Theorem elun2
StepHypRef Expression
1 ssun2 3301 . 2 𝐵 ⊆ (𝐶𝐵)
21sseli 3153 1 (𝐴𝐵𝐴 ∈ (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2148  cun 3129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144
This theorem is referenced by:  dcun  3535  exmidundif  4208  exmidundifim  4209  dftpos4  6266  tfrlemibxssdm  6330  tfrlemi14d  6336  tfr1onlembxssdm  6346  tfr1onlemres  6352  tfrcllembxssdm  6359  tfrcllemres  6365  dcdifsnid  6507  findcard2d  6893  findcard2sd  6894  onunsnss  6918  undifdcss  6924  fisseneq  6933  fidcenumlemrks  6954  djurclr  7051  djurcl  7053  djuss  7071  finomni  7140  mnfxr  8016  hashinfuni  10759  fsumsplitsnun  11429  sumsplitdc  11442  modfsummodlem1  11466  exmidunben  12429  srnginvld  12610  lmodvscad  12628  ipsscad  12640  ipsvscad  12641  ipsipd  12642
  Copyright terms: Public domain W3C validator