| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elun2 | GIF version | ||
| Description: Membership law for union of classes. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| elun2 | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐶 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 3336 | . 2 ⊢ 𝐵 ⊆ (𝐶 ∪ 𝐵) | |
| 2 | 1 | sseli 3188 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐶 ∪ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 ∪ cun 3163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 |
| This theorem is referenced by: dcun 3569 exmidundif 4249 exmidundifim 4250 dftpos4 6348 tfrlemibxssdm 6412 tfrlemi14d 6418 tfr1onlembxssdm 6428 tfr1onlemres 6434 tfrcllembxssdm 6441 tfrcllemres 6447 dcdifsnid 6589 findcard2d 6987 findcard2sd 6988 onunsnss 7013 undifdcss 7019 fisseneq 7030 fidcenumlemrks 7054 djurclr 7151 djurcl 7153 djuss 7171 finomni 7241 mnfxr 8128 hashinfuni 10920 fsumsplitsnun 11672 sumsplitdc 11685 modfsummodlem1 11709 exmidunben 12739 srnginvld 12924 lmodvscad 12942 ipsscad 12954 ipsvscad 12955 ipsipd 12956 |
| Copyright terms: Public domain | W3C validator |