![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elun2 | GIF version |
Description: Membership law for union of classes. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
elun2 | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐶 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 3323 | . 2 ⊢ 𝐵 ⊆ (𝐶 ∪ 𝐵) | |
2 | 1 | sseli 3175 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐶 ∪ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ∪ cun 3151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 |
This theorem is referenced by: dcun 3556 exmidundif 4235 exmidundifim 4236 dftpos4 6316 tfrlemibxssdm 6380 tfrlemi14d 6386 tfr1onlembxssdm 6396 tfr1onlemres 6402 tfrcllembxssdm 6409 tfrcllemres 6415 dcdifsnid 6557 findcard2d 6947 findcard2sd 6948 onunsnss 6973 undifdcss 6979 fisseneq 6988 fidcenumlemrks 7012 djurclr 7109 djurcl 7111 djuss 7129 finomni 7199 mnfxr 8076 hashinfuni 10848 fsumsplitsnun 11562 sumsplitdc 11575 modfsummodlem1 11599 exmidunben 12583 srnginvld 12767 lmodvscad 12785 ipsscad 12797 ipsvscad 12798 ipsipd 12799 |
Copyright terms: Public domain | W3C validator |