ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elun2 GIF version

Theorem elun2 3290
Description: Membership law for union of classes. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
elun2 (𝐴𝐵𝐴 ∈ (𝐶𝐵))

Proof of Theorem elun2
StepHypRef Expression
1 ssun2 3286 . 2 𝐵 ⊆ (𝐶𝐵)
21sseli 3138 1 (𝐴𝐵𝐴 ∈ (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2136  cun 3114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129
This theorem is referenced by:  dcun  3519  exmidundif  4185  exmidundifim  4186  dftpos4  6231  tfrlemibxssdm  6295  tfrlemi14d  6301  tfr1onlembxssdm  6311  tfr1onlemres  6317  tfrcllembxssdm  6324  tfrcllemres  6330  dcdifsnid  6472  findcard2d  6857  findcard2sd  6858  onunsnss  6882  undifdcss  6888  fisseneq  6897  fidcenumlemrks  6918  djurclr  7015  djurcl  7017  djuss  7035  finomni  7104  mnfxr  7955  hashinfuni  10690  fsumsplitsnun  11360  sumsplitdc  11373  modfsummodlem1  11397  exmidunben  12359  srnginvld  12521  lmodvscad  12532  ipsscad  12540  ipsvscad  12541  ipsipd  12542
  Copyright terms: Public domain W3C validator