| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elun2 | GIF version | ||
| Description: Membership law for union of classes. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| elun2 | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐶 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 3327 | . 2 ⊢ 𝐵 ⊆ (𝐶 ∪ 𝐵) | |
| 2 | 1 | sseli 3179 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐶 ∪ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ∪ cun 3155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 |
| This theorem is referenced by: dcun 3560 exmidundif 4239 exmidundifim 4240 dftpos4 6321 tfrlemibxssdm 6385 tfrlemi14d 6391 tfr1onlembxssdm 6401 tfr1onlemres 6407 tfrcllembxssdm 6414 tfrcllemres 6420 dcdifsnid 6562 findcard2d 6952 findcard2sd 6953 onunsnss 6978 undifdcss 6984 fisseneq 6995 fidcenumlemrks 7019 djurclr 7116 djurcl 7118 djuss 7136 finomni 7206 mnfxr 8083 hashinfuni 10869 fsumsplitsnun 11584 sumsplitdc 11597 modfsummodlem1 11621 exmidunben 12643 srnginvld 12827 lmodvscad 12845 ipsscad 12857 ipsvscad 12858 ipsipd 12859 |
| Copyright terms: Public domain | W3C validator |