ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elun2 GIF version

Theorem elun2 3332
Description: Membership law for union of classes. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
elun2 (𝐴𝐵𝐴 ∈ (𝐶𝐵))

Proof of Theorem elun2
StepHypRef Expression
1 ssun2 3328 . 2 𝐵 ⊆ (𝐶𝐵)
21sseli 3180 1 (𝐴𝐵𝐴 ∈ (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  cun 3155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170
This theorem is referenced by:  dcun  3561  exmidundif  4240  exmidundifim  4241  dftpos4  6330  tfrlemibxssdm  6394  tfrlemi14d  6400  tfr1onlembxssdm  6410  tfr1onlemres  6416  tfrcllembxssdm  6423  tfrcllemres  6429  dcdifsnid  6571  findcard2d  6961  findcard2sd  6962  onunsnss  6987  undifdcss  6993  fisseneq  7004  fidcenumlemrks  7028  djurclr  7125  djurcl  7127  djuss  7145  finomni  7215  mnfxr  8100  hashinfuni  10886  fsumsplitsnun  11601  sumsplitdc  11614  modfsummodlem1  11638  exmidunben  12668  srnginvld  12852  lmodvscad  12870  ipsscad  12882  ipsvscad  12883  ipsipd  12884
  Copyright terms: Public domain W3C validator