![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elun2 | GIF version |
Description: Membership law for union of classes. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
elun2 | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐶 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 3324 | . 2 ⊢ 𝐵 ⊆ (𝐶 ∪ 𝐵) | |
2 | 1 | sseli 3176 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐶 ∪ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ∪ cun 3152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 |
This theorem is referenced by: dcun 3557 exmidundif 4236 exmidundifim 4237 dftpos4 6318 tfrlemibxssdm 6382 tfrlemi14d 6388 tfr1onlembxssdm 6398 tfr1onlemres 6404 tfrcllembxssdm 6411 tfrcllemres 6417 dcdifsnid 6559 findcard2d 6949 findcard2sd 6950 onunsnss 6975 undifdcss 6981 fisseneq 6990 fidcenumlemrks 7014 djurclr 7111 djurcl 7113 djuss 7131 finomni 7201 mnfxr 8078 hashinfuni 10851 fsumsplitsnun 11565 sumsplitdc 11578 modfsummodlem1 11602 exmidunben 12586 srnginvld 12770 lmodvscad 12788 ipsscad 12800 ipsvscad 12801 ipsipd 12802 |
Copyright terms: Public domain | W3C validator |