ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elun2 GIF version

Theorem elun2 3340
Description: Membership law for union of classes. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
elun2 (𝐴𝐵𝐴 ∈ (𝐶𝐵))

Proof of Theorem elun2
StepHypRef Expression
1 ssun2 3336 . 2 𝐵 ⊆ (𝐶𝐵)
21sseli 3188 1 (𝐴𝐵𝐴 ∈ (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2175  cun 3163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-in 3171  df-ss 3178
This theorem is referenced by:  dcun  3569  exmidundif  4249  exmidundifim  4250  dftpos4  6348  tfrlemibxssdm  6412  tfrlemi14d  6418  tfr1onlembxssdm  6428  tfr1onlemres  6434  tfrcllembxssdm  6441  tfrcllemres  6447  dcdifsnid  6589  findcard2d  6987  findcard2sd  6988  onunsnss  7013  undifdcss  7019  fisseneq  7030  fidcenumlemrks  7054  djurclr  7151  djurcl  7153  djuss  7171  finomni  7241  mnfxr  8128  hashinfuni  10920  fsumsplitsnun  11672  sumsplitdc  11685  modfsummodlem1  11709  exmidunben  12739  srnginvld  12924  lmodvscad  12942  ipsscad  12954  ipsvscad  12955  ipsipd  12956
  Copyright terms: Public domain W3C validator