Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vsnid | GIF version |
Description: A setvar variable is a member of its singleton (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
vsnid | ⊢ 𝑥 ∈ {𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . 2 ⊢ 𝑥 ∈ V | |
2 | 1 | snid 3607 | 1 ⊢ 𝑥 ∈ {𝑥} |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 {csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sn 3582 |
This theorem is referenced by: rext 4193 snnex 4426 dtruex 4536 fnressn 5671 fressnfv 5672 findcard2d 6857 findcard2sd 6858 diffifi 6860 ac6sfi 6864 fisseneq 6897 finomni 7104 cc2lem 7207 modfsummodlem1 11397 txdis 12927 txdis1cn 12928 |
Copyright terms: Public domain | W3C validator |