![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vsnid | GIF version |
Description: A setvar variable is a member of its singleton (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
vsnid | ⊢ 𝑥 ∈ {𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2623 | . 2 ⊢ 𝑥 ∈ V | |
2 | 1 | snid 3479 | 1 ⊢ 𝑥 ∈ {𝑥} |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1439 {csn 3450 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-v 2622 df-sn 3456 |
This theorem is referenced by: rext 4051 snnex 4283 dtruex 4388 fnressn 5497 fressnfv 5498 findcard2d 6661 findcard2sd 6662 diffifi 6664 ac6sfi 6668 fisseneq 6696 finomni 6857 modfsummodlem1 10911 |
Copyright terms: Public domain | W3C validator |