ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vsnid GIF version

Theorem vsnid 3665
Description: A setvar variable is a member of its singleton (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
vsnid 𝑥 ∈ {𝑥}

Proof of Theorem vsnid
StepHypRef Expression
1 vex 2775 . 2 𝑥 ∈ V
21snid 3664 1 𝑥 ∈ {𝑥}
Colors of variables: wff set class
Syntax hints:  wcel 2176  {csn 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-sn 3639
This theorem is referenced by:  rext  4259  snnex  4495  dtruex  4607  fnressn  5770  fressnfv  5771  findcard2d  6988  findcard2sd  6989  diffifi  6991  ac6sfi  6995  fisseneq  7031  finomni  7242  cc2lem  7378  modfsummodlem1  11767  txdis  14749  txdis1cn  14750
  Copyright terms: Public domain W3C validator