ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vsnid GIF version

Theorem vsnid 3615
Description: A setvar variable is a member of its singleton (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
vsnid 𝑥 ∈ {𝑥}

Proof of Theorem vsnid
StepHypRef Expression
1 vex 2733 . 2 𝑥 ∈ V
21snid 3614 1 𝑥 ∈ {𝑥}
Colors of variables: wff set class
Syntax hints:  wcel 2141  {csn 3583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-sn 3589
This theorem is referenced by:  rext  4200  snnex  4433  dtruex  4543  fnressn  5682  fressnfv  5683  findcard2d  6869  findcard2sd  6870  diffifi  6872  ac6sfi  6876  fisseneq  6909  finomni  7116  cc2lem  7228  modfsummodlem1  11419  txdis  13071  txdis1cn  13072
  Copyright terms: Public domain W3C validator