| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vsnid | GIF version | ||
| Description: A setvar variable is a member of its singleton (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| vsnid | ⊢ 𝑥 ∈ {𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | snid 3697 | 1 ⊢ 𝑥 ∈ {𝑥} |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 {csn 3666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-sn 3672 |
| This theorem is referenced by: rext 4301 snnex 4539 dtruex 4651 fnressn 5825 fressnfv 5826 findcard2d 7053 findcard2sd 7054 diffifi 7056 ac6sfi 7060 fisseneq 7096 finomni 7307 cc2lem 7452 modfsummodlem1 11967 txdis 14951 txdis1cn 14952 |
| Copyright terms: Public domain | W3C validator |