| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vsnid | GIF version | ||
| Description: A setvar variable is a member of its singleton (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| vsnid | ⊢ 𝑥 ∈ {𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2766 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | snid 3654 | 1 ⊢ 𝑥 ∈ {𝑥} |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 {csn 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sn 3629 |
| This theorem is referenced by: rext 4249 snnex 4484 dtruex 4596 fnressn 5751 fressnfv 5752 findcard2d 6961 findcard2sd 6962 diffifi 6964 ac6sfi 6968 fisseneq 7004 finomni 7215 cc2lem 7349 modfsummodlem1 11638 txdis 14597 txdis1cn 14598 |
| Copyright terms: Public domain | W3C validator |