| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vsnid | GIF version | ||
| Description: A setvar variable is a member of its singleton (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| vsnid | ⊢ 𝑥 ∈ {𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2775 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | snid 3664 | 1 ⊢ 𝑥 ∈ {𝑥} |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2176 {csn 3633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-sn 3639 |
| This theorem is referenced by: rext 4259 snnex 4495 dtruex 4607 fnressn 5770 fressnfv 5771 findcard2d 6988 findcard2sd 6989 diffifi 6991 ac6sfi 6995 fisseneq 7031 finomni 7242 cc2lem 7378 modfsummodlem1 11767 txdis 14749 txdis1cn 14750 |
| Copyright terms: Public domain | W3C validator |