Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vsnid | GIF version |
Description: A setvar variable is a member of its singleton (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
vsnid | ⊢ 𝑥 ∈ {𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2733 | . 2 ⊢ 𝑥 ∈ V | |
2 | 1 | snid 3614 | 1 ⊢ 𝑥 ∈ {𝑥} |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 {csn 3583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-sn 3589 |
This theorem is referenced by: rext 4200 snnex 4433 dtruex 4543 fnressn 5682 fressnfv 5683 findcard2d 6869 findcard2sd 6870 diffifi 6872 ac6sfi 6876 fisseneq 6909 finomni 7116 cc2lem 7228 modfsummodlem1 11419 txdis 13071 txdis1cn 13072 |
Copyright terms: Public domain | W3C validator |