ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vsnid GIF version

Theorem vsnid 3626
Description: A setvar variable is a member of its singleton (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
vsnid 𝑥 ∈ {𝑥}

Proof of Theorem vsnid
StepHypRef Expression
1 vex 2742 . 2 𝑥 ∈ V
21snid 3625 1 𝑥 ∈ {𝑥}
Colors of variables: wff set class
Syntax hints:  wcel 2148  {csn 3594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-sn 3600
This theorem is referenced by:  rext  4217  snnex  4450  dtruex  4560  fnressn  5704  fressnfv  5705  findcard2d  6893  findcard2sd  6894  diffifi  6896  ac6sfi  6900  fisseneq  6933  finomni  7140  cc2lem  7267  modfsummodlem1  11466  txdis  13862  txdis1cn  13863
  Copyright terms: Public domain W3C validator