| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uniopn | GIF version | ||
| Description: The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006.) |
| Ref | Expression |
|---|---|
| uniopn | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → ∪ 𝐴 ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istopg 14413 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝐽 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) | |
| 2 | 1 | ibi 176 | . . . 4 ⊢ (𝐽 ∈ Top → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽)) |
| 3 | 2 | simpld 112 | . . 3 ⊢ (𝐽 ∈ Top → ∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽)) |
| 4 | elpw2g 4199 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → (𝐴 ∈ 𝒫 𝐽 ↔ 𝐴 ⊆ 𝐽)) | |
| 5 | 4 | biimpar 297 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → 𝐴 ∈ 𝒫 𝐽) |
| 6 | sseq1 3215 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝐽 ↔ 𝐴 ⊆ 𝐽)) | |
| 7 | unieq 3858 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
| 8 | 7 | eleq1d 2273 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ 𝐽 ↔ ∪ 𝐴 ∈ 𝐽)) |
| 9 | 6, 8 | imbi12d 234 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → ((𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ↔ (𝐴 ⊆ 𝐽 → ∪ 𝐴 ∈ 𝐽))) |
| 10 | 9 | spcgv 2859 | . . . . . . 7 ⊢ (𝐴 ∈ 𝒫 𝐽 → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) → (𝐴 ⊆ 𝐽 → ∪ 𝐴 ∈ 𝐽))) |
| 11 | 5, 10 | syl 14 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) → (𝐴 ⊆ 𝐽 → ∪ 𝐴 ∈ 𝐽))) |
| 12 | 11 | com23 78 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → (𝐴 ⊆ 𝐽 → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) → ∪ 𝐴 ∈ 𝐽))) |
| 13 | 12 | ex 115 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐴 ⊆ 𝐽 → (𝐴 ⊆ 𝐽 → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) → ∪ 𝐴 ∈ 𝐽)))) |
| 14 | 13 | pm2.43d 50 | . . 3 ⊢ (𝐽 ∈ Top → (𝐴 ⊆ 𝐽 → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) → ∪ 𝐴 ∈ 𝐽))) |
| 15 | 3, 14 | mpid 42 | . 2 ⊢ (𝐽 ∈ Top → (𝐴 ⊆ 𝐽 → ∪ 𝐴 ∈ 𝐽)) |
| 16 | 15 | imp 124 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → ∪ 𝐴 ∈ 𝐽) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1370 = wceq 1372 ∈ wcel 2175 ∀wral 2483 ∩ cin 3164 ⊆ wss 3165 𝒫 cpw 3615 ∪ cuni 3849 Topctop 14411 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-in 3171 df-ss 3178 df-pw 3617 df-uni 3850 df-top 14412 |
| This theorem is referenced by: iunopn 14416 unopn 14419 0opn 14420 topopn 14422 tgtop 14482 ntropn 14531 neipsm 14568 unimopn 14900 metrest 14920 cnopncntop 14958 cnopn 14959 |
| Copyright terms: Public domain | W3C validator |