ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniopn GIF version

Theorem uniopn 14415
Description: The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006.)
Assertion
Ref Expression
uniopn ((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴𝐽)

Proof of Theorem uniopn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 istopg 14413 . . . . 5 (𝐽 ∈ Top → (𝐽 ∈ Top ↔ (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽)))
21ibi 176 . . . 4 (𝐽 ∈ Top → (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽))
32simpld 112 . . 3 (𝐽 ∈ Top → ∀𝑥(𝑥𝐽 𝑥𝐽))
4 elpw2g 4199 . . . . . . . 8 (𝐽 ∈ Top → (𝐴 ∈ 𝒫 𝐽𝐴𝐽))
54biimpar 297 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴 ∈ 𝒫 𝐽)
6 sseq1 3215 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥𝐽𝐴𝐽))
7 unieq 3858 . . . . . . . . . 10 (𝑥 = 𝐴 𝑥 = 𝐴)
87eleq1d 2273 . . . . . . . . 9 (𝑥 = 𝐴 → ( 𝑥𝐽 𝐴𝐽))
96, 8imbi12d 234 . . . . . . . 8 (𝑥 = 𝐴 → ((𝑥𝐽 𝑥𝐽) ↔ (𝐴𝐽 𝐴𝐽)))
109spcgv 2859 . . . . . . 7 (𝐴 ∈ 𝒫 𝐽 → (∀𝑥(𝑥𝐽 𝑥𝐽) → (𝐴𝐽 𝐴𝐽)))
115, 10syl 14 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (∀𝑥(𝑥𝐽 𝑥𝐽) → (𝐴𝐽 𝐴𝐽)))
1211com23 78 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐴𝐽 → (∀𝑥(𝑥𝐽 𝑥𝐽) → 𝐴𝐽)))
1312ex 115 . . . 4 (𝐽 ∈ Top → (𝐴𝐽 → (𝐴𝐽 → (∀𝑥(𝑥𝐽 𝑥𝐽) → 𝐴𝐽))))
1413pm2.43d 50 . . 3 (𝐽 ∈ Top → (𝐴𝐽 → (∀𝑥(𝑥𝐽 𝑥𝐽) → 𝐴𝐽)))
153, 14mpid 42 . 2 (𝐽 ∈ Top → (𝐴𝐽 𝐴𝐽))
1615imp 124 1 ((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴𝐽)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1370   = wceq 1372  wcel 2175  wral 2483  cin 3164  wss 3165  𝒫 cpw 3615   cuni 3849  Topctop 14411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-sep 4161
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-in 3171  df-ss 3178  df-pw 3617  df-uni 3850  df-top 14412
This theorem is referenced by:  iunopn  14416  unopn  14419  0opn  14420  topopn  14422  tgtop  14482  ntropn  14531  neipsm  14568  unimopn  14900  metrest  14920  cnopncntop  14958  cnopn  14959
  Copyright terms: Public domain W3C validator