Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uniopn | GIF version |
Description: The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006.) |
Ref | Expression |
---|---|
uniopn | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → ∪ 𝐴 ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istopg 12408 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝐽 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) | |
2 | 1 | ibi 175 | . . . 4 ⊢ (𝐽 ∈ Top → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽)) |
3 | 2 | simpld 111 | . . 3 ⊢ (𝐽 ∈ Top → ∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽)) |
4 | elpw2g 4117 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → (𝐴 ∈ 𝒫 𝐽 ↔ 𝐴 ⊆ 𝐽)) | |
5 | 4 | biimpar 295 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → 𝐴 ∈ 𝒫 𝐽) |
6 | sseq1 3151 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝐽 ↔ 𝐴 ⊆ 𝐽)) | |
7 | unieq 3781 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
8 | 7 | eleq1d 2226 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ 𝐽 ↔ ∪ 𝐴 ∈ 𝐽)) |
9 | 6, 8 | imbi12d 233 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → ((𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ↔ (𝐴 ⊆ 𝐽 → ∪ 𝐴 ∈ 𝐽))) |
10 | 9 | spcgv 2799 | . . . . . . 7 ⊢ (𝐴 ∈ 𝒫 𝐽 → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) → (𝐴 ⊆ 𝐽 → ∪ 𝐴 ∈ 𝐽))) |
11 | 5, 10 | syl 14 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) → (𝐴 ⊆ 𝐽 → ∪ 𝐴 ∈ 𝐽))) |
12 | 11 | com23 78 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → (𝐴 ⊆ 𝐽 → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) → ∪ 𝐴 ∈ 𝐽))) |
13 | 12 | ex 114 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐴 ⊆ 𝐽 → (𝐴 ⊆ 𝐽 → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) → ∪ 𝐴 ∈ 𝐽)))) |
14 | 13 | pm2.43d 50 | . . 3 ⊢ (𝐽 ∈ Top → (𝐴 ⊆ 𝐽 → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) → ∪ 𝐴 ∈ 𝐽))) |
15 | 3, 14 | mpid 42 | . 2 ⊢ (𝐽 ∈ Top → (𝐴 ⊆ 𝐽 → ∪ 𝐴 ∈ 𝐽)) |
16 | 15 | imp 123 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → ∪ 𝐴 ∈ 𝐽) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1333 = wceq 1335 ∈ wcel 2128 ∀wral 2435 ∩ cin 3101 ⊆ wss 3102 𝒫 cpw 3543 ∪ cuni 3772 Topctop 12406 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-sep 4082 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-in 3108 df-ss 3115 df-pw 3545 df-uni 3773 df-top 12407 |
This theorem is referenced by: iunopn 12411 unopn 12414 0opn 12415 topopn 12417 tgtop 12479 ntropn 12528 neipsm 12565 unimopn 12897 metrest 12917 cnopncntop 12948 |
Copyright terms: Public domain | W3C validator |