ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcn2 GIF version

Theorem climcn2 11272
Description: Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climcn2.1 𝑍 = (ℤ𝑀)
climcn2.2 (𝜑𝑀 ∈ ℤ)
climcn2.3a (𝜑𝐴𝐶)
climcn2.3b (𝜑𝐵𝐷)
climcn2.4 ((𝜑 ∧ (𝑢𝐶𝑣𝐷)) → (𝑢𝐹𝑣) ∈ ℂ)
climcn2.5a (𝜑𝐺𝐴)
climcn2.5b (𝜑𝐻𝐵)
climcn2.6 (𝜑𝐾𝑊)
climcn2.7 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥))
climcn2.8a ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝐶)
climcn2.8b ((𝜑𝑘𝑍) → (𝐻𝑘) ∈ 𝐷)
climcn2.9 ((𝜑𝑘𝑍) → (𝐾𝑘) = ((𝐺𝑘)𝐹(𝐻𝑘)))
Assertion
Ref Expression
climcn2 (𝜑𝐾 ⇝ (𝐴𝐹𝐵))
Distinct variable groups:   𝑢,𝑘,𝑣,𝐶   𝐷,𝑘,𝑢,𝑣   𝑦,𝑘,𝑧,𝐻,𝑣   𝑥,𝑘,𝜑,𝑢,𝑦,𝑧,𝑣   𝐴,𝑘,𝑢,𝑣,𝑥,𝑦,𝑧   𝑘,𝐺,𝑢,𝑣,𝑦,𝑧   𝑘,𝐾,𝑥   𝑘,𝑍,𝑦,𝑧   𝐵,𝑘,𝑢,𝑣,𝑥,𝑦,𝑧   𝑘,𝐹,𝑢,𝑣,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧)   𝐷(𝑥,𝑦,𝑧)   𝐺(𝑥)   𝐻(𝑥,𝑢)   𝐾(𝑦,𝑧,𝑣,𝑢)   𝑀(𝑥,𝑦,𝑧,𝑣,𝑢,𝑘)   𝑊(𝑥,𝑦,𝑧,𝑣,𝑢,𝑘)   𝑍(𝑥,𝑣,𝑢)

Proof of Theorem climcn2
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climcn2.7 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥))
2 climcn2.1 . . . . . . . . 9 𝑍 = (ℤ𝑀)
3 climcn2.2 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
43adantr 274 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝑀 ∈ ℤ)
5 simprl 526 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝑦 ∈ ℝ+)
6 eqidd 2171 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑘𝑍) → (𝐺𝑘) = (𝐺𝑘))
7 climcn2.5a . . . . . . . . . 10 (𝜑𝐺𝐴)
87adantr 274 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝐺𝐴)
92, 4, 5, 6, 8climi2 11251 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦)
10 simprr 527 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝑧 ∈ ℝ+)
11 eqidd 2171 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑘𝑍) → (𝐻𝑘) = (𝐻𝑘))
12 climcn2.5b . . . . . . . . . 10 (𝜑𝐻𝐵)
1312adantr 274 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝐻𝐵)
142, 4, 10, 11, 13climi2 11251 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐻𝑘) − 𝐵)) < 𝑧)
152rexanuz2 10955 . . . . . . . 8 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐻𝑘) − 𝐵)) < 𝑧))
169, 14, 15sylanbrc 415 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧))
172uztrn2 9504 . . . . . . . . . . . . 13 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
18 climcn2.8a . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝐶)
19 climcn2.8b . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → (𝐻𝑘) ∈ 𝐷)
20 oveq1 5860 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = (𝐺𝑘) → (𝑢𝐴) = ((𝐺𝑘) − 𝐴))
2120fveq2d 5500 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = (𝐺𝑘) → (abs‘(𝑢𝐴)) = (abs‘((𝐺𝑘) − 𝐴)))
2221breq1d 3999 . . . . . . . . . . . . . . . . . . 19 (𝑢 = (𝐺𝑘) → ((abs‘(𝑢𝐴)) < 𝑦 ↔ (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
2322anbi1d 462 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝐺𝑘) → (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) ↔ ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧)))
24 oveq1 5860 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = (𝐺𝑘) → (𝑢𝐹𝑣) = ((𝐺𝑘)𝐹𝑣))
2524oveq1d 5868 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = (𝐺𝑘) → ((𝑢𝐹𝑣) − (𝐴𝐹𝐵)) = (((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵)))
2625fveq2d 5500 . . . . . . . . . . . . . . . . . . 19 (𝑢 = (𝐺𝑘) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) = (abs‘(((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵))))
2726breq1d 3999 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝐺𝑘) → ((abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥 ↔ (abs‘(((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥))
2823, 27imbi12d 233 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝐺𝑘) → ((((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) ↔ (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)))
29 oveq1 5860 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (𝐻𝑘) → (𝑣𝐵) = ((𝐻𝑘) − 𝐵))
3029fveq2d 5500 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = (𝐻𝑘) → (abs‘(𝑣𝐵)) = (abs‘((𝐻𝑘) − 𝐵)))
3130breq1d 3999 . . . . . . . . . . . . . . . . . . 19 (𝑣 = (𝐻𝑘) → ((abs‘(𝑣𝐵)) < 𝑧 ↔ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧))
3231anbi2d 461 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝐻𝑘) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) ↔ ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧)))
33 oveq2 5861 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (𝐻𝑘) → ((𝐺𝑘)𝐹𝑣) = ((𝐺𝑘)𝐹(𝐻𝑘)))
3433oveq1d 5868 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = (𝐻𝑘) → (((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵)) = (((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵)))
3534fveq2d 5500 . . . . . . . . . . . . . . . . . . 19 (𝑣 = (𝐻𝑘) → (abs‘(((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵))) = (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))))
3635breq1d 3999 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝐻𝑘) → ((abs‘(((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥 ↔ (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
3732, 36imbi12d 233 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝐻𝑘) → ((((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) ↔ (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)))
3828, 37rspc2v 2847 . . . . . . . . . . . . . . . 16 (((𝐺𝑘) ∈ 𝐶 ∧ (𝐻𝑘) ∈ 𝐷) → (∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)))
3918, 19, 38syl2anc 409 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)))
4039imp 123 . . . . . . . . . . . . . 14 (((𝜑𝑘𝑍) ∧ ∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
4140an32s 563 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)) ∧ 𝑘𝑍) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
4217, 41sylan2 284 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
4342anassrs 398 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
4443ralimdva 2537 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
4544reximdva 2572 . . . . . . . . 9 ((𝜑 ∧ ∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
4645ex 114 . . . . . . . 8 (𝜑 → (∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)))
4746adantr 274 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)))
4816, 47mpid 42 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
4948rexlimdvva 2595 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
5049adantr 274 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
511, 50mpd 13 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)
5251ralrimiva 2543 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)
53 climcn2.6 . . 3 (𝜑𝐾𝑊)
54 climcn2.9 . . 3 ((𝜑𝑘𝑍) → (𝐾𝑘) = ((𝐺𝑘)𝐹(𝐻𝑘)))
55 climcn2.4 . . . 4 ((𝜑 ∧ (𝑢𝐶𝑣𝐷)) → (𝑢𝐹𝑣) ∈ ℂ)
56 climcn2.3a . . . 4 (𝜑𝐴𝐶)
57 climcn2.3b . . . 4 (𝜑𝐵𝐷)
5855, 56, 57caovcld 6006 . . 3 (𝜑 → (𝐴𝐹𝐵) ∈ ℂ)
5918, 19jca 304 . . . 4 ((𝜑𝑘𝑍) → ((𝐺𝑘) ∈ 𝐶 ∧ (𝐻𝑘) ∈ 𝐷))
6055ralrimivva 2552 . . . . 5 (𝜑 → ∀𝑢𝐶𝑣𝐷 (𝑢𝐹𝑣) ∈ ℂ)
6160adantr 274 . . . 4 ((𝜑𝑘𝑍) → ∀𝑢𝐶𝑣𝐷 (𝑢𝐹𝑣) ∈ ℂ)
6224eleq1d 2239 . . . . 5 (𝑢 = (𝐺𝑘) → ((𝑢𝐹𝑣) ∈ ℂ ↔ ((𝐺𝑘)𝐹𝑣) ∈ ℂ))
6333eleq1d 2239 . . . . 5 (𝑣 = (𝐻𝑘) → (((𝐺𝑘)𝐹𝑣) ∈ ℂ ↔ ((𝐺𝑘)𝐹(𝐻𝑘)) ∈ ℂ))
6462, 63rspc2v 2847 . . . 4 (((𝐺𝑘) ∈ 𝐶 ∧ (𝐻𝑘) ∈ 𝐷) → (∀𝑢𝐶𝑣𝐷 (𝑢𝐹𝑣) ∈ ℂ → ((𝐺𝑘)𝐹(𝐻𝑘)) ∈ ℂ))
6559, 61, 64sylc 62 . . 3 ((𝜑𝑘𝑍) → ((𝐺𝑘)𝐹(𝐻𝑘)) ∈ ℂ)
662, 3, 53, 54, 58, 65clim2c 11247 . 2 (𝜑 → (𝐾 ⇝ (𝐴𝐹𝐵) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
6752, 66mpbird 166 1 (𝜑𝐾 ⇝ (𝐴𝐹𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wral 2448  wrex 2449   class class class wbr 3989  cfv 5198  (class class class)co 5853  cc 7772   < clt 7954  cmin 8090  cz 9212  cuz 9487  +crp 9610  abscabs 10961  cli 11241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-clim 11242
This theorem is referenced by:  climadd  11289  climmul  11290  climsub  11291
  Copyright terms: Public domain W3C validator