ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcn2 GIF version

Theorem climcn2 10694
Description: Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climcn2.1 𝑍 = (ℤ𝑀)
climcn2.2 (𝜑𝑀 ∈ ℤ)
climcn2.3a (𝜑𝐴𝐶)
climcn2.3b (𝜑𝐵𝐷)
climcn2.4 ((𝜑 ∧ (𝑢𝐶𝑣𝐷)) → (𝑢𝐹𝑣) ∈ ℂ)
climcn2.5a (𝜑𝐺𝐴)
climcn2.5b (𝜑𝐻𝐵)
climcn2.6 (𝜑𝐾𝑊)
climcn2.7 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥))
climcn2.8a ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝐶)
climcn2.8b ((𝜑𝑘𝑍) → (𝐻𝑘) ∈ 𝐷)
climcn2.9 ((𝜑𝑘𝑍) → (𝐾𝑘) = ((𝐺𝑘)𝐹(𝐻𝑘)))
Assertion
Ref Expression
climcn2 (𝜑𝐾 ⇝ (𝐴𝐹𝐵))
Distinct variable groups:   𝑢,𝑘,𝑣,𝐶   𝐷,𝑘,𝑢,𝑣   𝑦,𝑘,𝑧,𝐻,𝑣   𝑥,𝑘,𝜑,𝑢,𝑦,𝑧,𝑣   𝐴,𝑘,𝑢,𝑣,𝑥,𝑦,𝑧   𝑘,𝐺,𝑢,𝑣,𝑦,𝑧   𝑘,𝐾,𝑥   𝑘,𝑍,𝑦,𝑧   𝐵,𝑘,𝑢,𝑣,𝑥,𝑦,𝑧   𝑘,𝐹,𝑢,𝑣,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧)   𝐷(𝑥,𝑦,𝑧)   𝐺(𝑥)   𝐻(𝑥,𝑢)   𝐾(𝑦,𝑧,𝑣,𝑢)   𝑀(𝑥,𝑦,𝑧,𝑣,𝑢,𝑘)   𝑊(𝑥,𝑦,𝑧,𝑣,𝑢,𝑘)   𝑍(𝑥,𝑣,𝑢)

Proof of Theorem climcn2
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climcn2.7 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥))
2 climcn2.1 . . . . . . . . 9 𝑍 = (ℤ𝑀)
3 climcn2.2 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
43adantr 270 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝑀 ∈ ℤ)
5 simprl 498 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝑦 ∈ ℝ+)
6 eqidd 2089 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑘𝑍) → (𝐺𝑘) = (𝐺𝑘))
7 climcn2.5a . . . . . . . . . 10 (𝜑𝐺𝐴)
87adantr 270 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝐺𝐴)
92, 4, 5, 6, 8climi2 10672 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦)
10 simprr 499 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝑧 ∈ ℝ+)
11 eqidd 2089 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑘𝑍) → (𝐻𝑘) = (𝐻𝑘))
12 climcn2.5b . . . . . . . . . 10 (𝜑𝐻𝐵)
1312adantr 270 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝐻𝐵)
142, 4, 10, 11, 13climi2 10672 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐻𝑘) − 𝐵)) < 𝑧)
152rexanuz2 10420 . . . . . . . 8 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐻𝑘) − 𝐵)) < 𝑧))
169, 14, 15sylanbrc 408 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧))
172uztrn2 9034 . . . . . . . . . . . . 13 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
18 climcn2.8a . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝐶)
19 climcn2.8b . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → (𝐻𝑘) ∈ 𝐷)
20 oveq1 5659 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = (𝐺𝑘) → (𝑢𝐴) = ((𝐺𝑘) − 𝐴))
2120fveq2d 5309 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = (𝐺𝑘) → (abs‘(𝑢𝐴)) = (abs‘((𝐺𝑘) − 𝐴)))
2221breq1d 3855 . . . . . . . . . . . . . . . . . . 19 (𝑢 = (𝐺𝑘) → ((abs‘(𝑢𝐴)) < 𝑦 ↔ (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
2322anbi1d 453 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝐺𝑘) → (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) ↔ ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧)))
24 oveq1 5659 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = (𝐺𝑘) → (𝑢𝐹𝑣) = ((𝐺𝑘)𝐹𝑣))
2524oveq1d 5667 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = (𝐺𝑘) → ((𝑢𝐹𝑣) − (𝐴𝐹𝐵)) = (((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵)))
2625fveq2d 5309 . . . . . . . . . . . . . . . . . . 19 (𝑢 = (𝐺𝑘) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) = (abs‘(((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵))))
2726breq1d 3855 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝐺𝑘) → ((abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥 ↔ (abs‘(((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥))
2823, 27imbi12d 232 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝐺𝑘) → ((((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) ↔ (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)))
29 oveq1 5659 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (𝐻𝑘) → (𝑣𝐵) = ((𝐻𝑘) − 𝐵))
3029fveq2d 5309 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = (𝐻𝑘) → (abs‘(𝑣𝐵)) = (abs‘((𝐻𝑘) − 𝐵)))
3130breq1d 3855 . . . . . . . . . . . . . . . . . . 19 (𝑣 = (𝐻𝑘) → ((abs‘(𝑣𝐵)) < 𝑧 ↔ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧))
3231anbi2d 452 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝐻𝑘) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) ↔ ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧)))
33 oveq2 5660 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (𝐻𝑘) → ((𝐺𝑘)𝐹𝑣) = ((𝐺𝑘)𝐹(𝐻𝑘)))
3433oveq1d 5667 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = (𝐻𝑘) → (((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵)) = (((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵)))
3534fveq2d 5309 . . . . . . . . . . . . . . . . . . 19 (𝑣 = (𝐻𝑘) → (abs‘(((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵))) = (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))))
3635breq1d 3855 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝐻𝑘) → ((abs‘(((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥 ↔ (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
3732, 36imbi12d 232 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝐻𝑘) → ((((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) ↔ (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)))
3828, 37rspc2v 2734 . . . . . . . . . . . . . . . 16 (((𝐺𝑘) ∈ 𝐶 ∧ (𝐻𝑘) ∈ 𝐷) → (∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)))
3918, 19, 38syl2anc 403 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)))
4039imp 122 . . . . . . . . . . . . . 14 (((𝜑𝑘𝑍) ∧ ∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
4140an32s 535 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)) ∧ 𝑘𝑍) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
4217, 41sylan2 280 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
4342anassrs 392 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
4443ralimdva 2441 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
4544reximdva 2475 . . . . . . . . 9 ((𝜑 ∧ ∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
4645ex 113 . . . . . . . 8 (𝜑 → (∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)))
4746adantr 270 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)))
4816, 47mpid 41 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
4948rexlimdvva 2496 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
5049adantr 270 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
511, 50mpd 13 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)
5251ralrimiva 2446 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)
53 climcn2.6 . . 3 (𝜑𝐾𝑊)
54 climcn2.9 . . 3 ((𝜑𝑘𝑍) → (𝐾𝑘) = ((𝐺𝑘)𝐹(𝐻𝑘)))
55 climcn2.4 . . . 4 ((𝜑 ∧ (𝑢𝐶𝑣𝐷)) → (𝑢𝐹𝑣) ∈ ℂ)
56 climcn2.3a . . . 4 (𝜑𝐴𝐶)
57 climcn2.3b . . . 4 (𝜑𝐵𝐷)
5855, 56, 57caovcld 5798 . . 3 (𝜑 → (𝐴𝐹𝐵) ∈ ℂ)
5918, 19jca 300 . . . 4 ((𝜑𝑘𝑍) → ((𝐺𝑘) ∈ 𝐶 ∧ (𝐻𝑘) ∈ 𝐷))
6055ralrimivva 2455 . . . . 5 (𝜑 → ∀𝑢𝐶𝑣𝐷 (𝑢𝐹𝑣) ∈ ℂ)
6160adantr 270 . . . 4 ((𝜑𝑘𝑍) → ∀𝑢𝐶𝑣𝐷 (𝑢𝐹𝑣) ∈ ℂ)
6224eleq1d 2156 . . . . 5 (𝑢 = (𝐺𝑘) → ((𝑢𝐹𝑣) ∈ ℂ ↔ ((𝐺𝑘)𝐹𝑣) ∈ ℂ))
6333eleq1d 2156 . . . . 5 (𝑣 = (𝐻𝑘) → (((𝐺𝑘)𝐹𝑣) ∈ ℂ ↔ ((𝐺𝑘)𝐹(𝐻𝑘)) ∈ ℂ))
6462, 63rspc2v 2734 . . . 4 (((𝐺𝑘) ∈ 𝐶 ∧ (𝐻𝑘) ∈ 𝐷) → (∀𝑢𝐶𝑣𝐷 (𝑢𝐹𝑣) ∈ ℂ → ((𝐺𝑘)𝐹(𝐻𝑘)) ∈ ℂ))
6559, 61, 64sylc 61 . . 3 ((𝜑𝑘𝑍) → ((𝐺𝑘)𝐹(𝐻𝑘)) ∈ ℂ)
662, 3, 53, 54, 58, 65clim2c 10668 . 2 (𝜑 → (𝐾 ⇝ (𝐴𝐹𝐵) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
6752, 66mpbird 165 1 (𝜑𝐾 ⇝ (𝐴𝐹𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1289  wcel 1438  wral 2359  wrex 2360   class class class wbr 3845  cfv 5015  (class class class)co 5652  cc 7346   < clt 7520  cmin 7651  cz 8748  cuz 9017  +crp 9132  abscabs 10426  cli 10662
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-cnex 7434  ax-resscn 7435  ax-1cn 7436  ax-1re 7437  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-addcom 7443  ax-addass 7445  ax-distr 7447  ax-i2m1 7448  ax-0lt1 7449  ax-0id 7451  ax-rnegex 7452  ax-cnre 7454  ax-pre-ltirr 7455  ax-pre-ltwlin 7456  ax-pre-lttrn 7457  ax-pre-apti 7458  ax-pre-ltadd 7459
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-if 3394  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-pnf 7522  df-mnf 7523  df-xr 7524  df-ltxr 7525  df-le 7526  df-sub 7653  df-neg 7654  df-inn 8421  df-n0 8672  df-z 8749  df-uz 9018  df-clim 10663
This theorem is referenced by:  climadd  10710  climmul  10711  climsub  10712
  Copyright terms: Public domain W3C validator