ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfco GIF version

Theorem cncfco 14746
Description: The composition of two continuous maps on complex numbers is also continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
cncfco.4 (𝜑𝐹 ∈ (𝐴cn𝐵))
cncfco.5 (𝜑𝐺 ∈ (𝐵cn𝐶))
Assertion
Ref Expression
cncfco (𝜑 → (𝐺𝐹) ∈ (𝐴cn𝐶))

Proof of Theorem cncfco
Dummy variables 𝑤 𝑢 𝑥 𝑦 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncfco.5 . . . 4 (𝜑𝐺 ∈ (𝐵cn𝐶))
2 cncff 14732 . . . 4 (𝐺 ∈ (𝐵cn𝐶) → 𝐺:𝐵𝐶)
31, 2syl 14 . . 3 (𝜑𝐺:𝐵𝐶)
4 cncfco.4 . . . 4 (𝜑𝐹 ∈ (𝐴cn𝐵))
5 cncff 14732 . . . 4 (𝐹 ∈ (𝐴cn𝐵) → 𝐹:𝐴𝐵)
64, 5syl 14 . . 3 (𝜑𝐹:𝐴𝐵)
7 fco 5419 . . 3 ((𝐺:𝐵𝐶𝐹:𝐴𝐵) → (𝐺𝐹):𝐴𝐶)
83, 6, 7syl2anc 411 . 2 (𝜑 → (𝐺𝐹):𝐴𝐶)
91adantr 276 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → 𝐺 ∈ (𝐵cn𝐶))
106adantr 276 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → 𝐹:𝐴𝐵)
11 simprl 529 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → 𝑥𝐴)
1210, 11ffvelcdmd 5694 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → (𝐹𝑥) ∈ 𝐵)
13 simprr 531 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → 𝑦 ∈ ℝ+)
14 cncfi 14733 . . . . 5 ((𝐺 ∈ (𝐵cn𝐶) ∧ (𝐹𝑥) ∈ 𝐵𝑦 ∈ ℝ+) → ∃𝑢 ∈ ℝ+𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦))
159, 12, 13, 14syl3anc 1249 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → ∃𝑢 ∈ ℝ+𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦))
164ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) → 𝐹 ∈ (𝐴cn𝐵))
17 simplrl 535 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) → 𝑥𝐴)
18 simpr 110 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) → 𝑢 ∈ ℝ+)
19 cncfi 14733 . . . . . . 7 ((𝐹 ∈ (𝐴cn𝐵) ∧ 𝑥𝐴𝑢 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢))
2016, 17, 18, 19syl3anc 1249 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢))
216ad3antrrr 492 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → 𝐹:𝐴𝐵)
22 simprr 531 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → 𝑤𝐴)
2321, 22ffvelcdmd 5694 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → (𝐹𝑤) ∈ 𝐵)
24 fvoveq1 5941 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝐹𝑤) → (abs‘(𝑣 − (𝐹𝑥))) = (abs‘((𝐹𝑤) − (𝐹𝑥))))
2524breq1d 4039 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝐹𝑤) → ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 ↔ (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢))
2625imbrov2fvoveq 5943 . . . . . . . . . . . . . . . 16 (𝑣 = (𝐹𝑤) → (((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦) ↔ ((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺‘(𝐹𝑤)) − (𝐺‘(𝐹𝑥)))) < 𝑦)))
2726rspcv 2860 . . . . . . . . . . . . . . 15 ((𝐹𝑤) ∈ 𝐵 → (∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦) → ((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺‘(𝐹𝑤)) − (𝐺‘(𝐹𝑥)))) < 𝑦)))
2823, 27syl 14 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → (∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦) → ((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺‘(𝐹𝑤)) − (𝐺‘(𝐹𝑥)))) < 𝑦)))
29 fvco3 5628 . . . . . . . . . . . . . . . . . . 19 ((𝐹:𝐴𝐵𝑤𝐴) → ((𝐺𝐹)‘𝑤) = (𝐺‘(𝐹𝑤)))
3021, 22, 29syl2anc 411 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → ((𝐺𝐹)‘𝑤) = (𝐺‘(𝐹𝑤)))
3117adantr 276 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → 𝑥𝐴)
32 fvco3 5628 . . . . . . . . . . . . . . . . . . 19 ((𝐹:𝐴𝐵𝑥𝐴) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
3321, 31, 32syl2anc 411 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
3430, 33oveq12d 5936 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → (((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥)) = ((𝐺‘(𝐹𝑤)) − (𝐺‘(𝐹𝑥))))
3534fveq2d 5558 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) = (abs‘((𝐺‘(𝐹𝑤)) − (𝐺‘(𝐹𝑥)))))
3635breq1d 4039 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → ((abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦 ↔ (abs‘((𝐺‘(𝐹𝑤)) − (𝐺‘(𝐹𝑥)))) < 𝑦))
3736imbi2d 230 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → (((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦) ↔ ((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺‘(𝐹𝑤)) − (𝐺‘(𝐹𝑥)))) < 𝑦)))
3828, 37sylibrd 169 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → (∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦) → ((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦)))
3938imp 124 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) ∧ ∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦)) → ((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦))
4039an32s 568 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦)) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → ((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦))
4140imim2d 54 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦)) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → (((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢) → ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦)))
4241anassrs 400 . . . . . . . . 9 ((((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤𝐴) → (((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢) → ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦)))
4342ralimdva 2561 . . . . . . . 8 (((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦)) ∧ 𝑧 ∈ ℝ+) → (∀𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢) → ∀𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦)))
4443reximdva 2596 . . . . . . 7 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦)) → (∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦)))
4544ex 115 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) → (∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦) → (∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦))))
4620, 45mpid 42 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) → (∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦)))
4746rexlimdva 2611 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → (∃𝑢 ∈ ℝ+𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦)))
4815, 47mpd 13 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦))
4948ralrimivva 2576 . 2 (𝜑 → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦))
50 cncfrss 14730 . . . 4 (𝐹 ∈ (𝐴cn𝐵) → 𝐴 ⊆ ℂ)
514, 50syl 14 . . 3 (𝜑𝐴 ⊆ ℂ)
52 cncfrss2 14731 . . . 4 (𝐺 ∈ (𝐵cn𝐶) → 𝐶 ⊆ ℂ)
531, 52syl 14 . . 3 (𝜑𝐶 ⊆ ℂ)
54 elcncf2 14729 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐶 ⊆ ℂ) → ((𝐺𝐹) ∈ (𝐴cn𝐶) ↔ ((𝐺𝐹):𝐴𝐶 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦))))
5551, 53, 54syl2anc 411 . 2 (𝜑 → ((𝐺𝐹) ∈ (𝐴cn𝐶) ↔ ((𝐺𝐹):𝐴𝐶 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦))))
568, 49, 55mpbir2and 946 1 (𝜑 → (𝐺𝐹) ∈ (𝐴cn𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  wrex 2473  wss 3153   class class class wbr 4029  ccom 4663  wf 5250  cfv 5254  (class class class)co 5918  cc 7870   < clt 8054  cmin 8190  +crp 9719  abscabs 11141  cnccncf 14725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-map 6704  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-2 9041  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-cncf 14726
This theorem is referenced by:  cncfmpt1f  14752  cdivcncfap  14758  negfcncf  14760  divcncfap  14768  sincn  14904  coscn  14905
  Copyright terms: Public domain W3C validator