ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcn1 GIF version

Theorem climcn1 11330
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climcn1.1 𝑍 = (ℤ𝑀)
climcn1.2 (𝜑𝑀 ∈ ℤ)
climcn1.3 (𝜑𝐴𝐵)
climcn1.4 ((𝜑𝑧𝐵) → (𝐹𝑧) ∈ ℂ)
climcn1.5 (𝜑𝐺𝐴)
climcn1.6 (𝜑𝐻𝑊)
climcn1.7 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
climcn1.8 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝐵)
climcn1.9 ((𝜑𝑘𝑍) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
Assertion
Ref Expression
climcn1 (𝜑𝐻 ⇝ (𝐹𝐴))
Distinct variable groups:   𝑥,𝑘,𝑦,𝑧,𝐴   𝐵,𝑘,𝑧   𝑘,𝐺,𝑦,𝑧   𝑘,𝐻,𝑥   𝑘,𝐹,𝑥,𝑦,𝑧   𝜑,𝑘,𝑥,𝑦,𝑧   𝑘,𝑍,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐺(𝑥)   𝐻(𝑦,𝑧)   𝑀(𝑥,𝑦,𝑧,𝑘)   𝑊(𝑥,𝑦,𝑧,𝑘)   𝑍(𝑥,𝑧)

Proof of Theorem climcn1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climcn1.7 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
2 climcn1.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
3 climcn1.2 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
43adantr 276 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 𝑀 ∈ ℤ)
5 simpr 110 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
6 eqidd 2188 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐺𝑘) = (𝐺𝑘))
7 climcn1.5 . . . . . . . . 9 (𝜑𝐺𝐴)
87adantr 276 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 𝐺𝐴)
92, 4, 5, 6, 8climi2 11310 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦)
102uztrn2 9559 . . . . . . . . . . . 12 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
11 climcn1.8 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝐵)
1211adantlr 477 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐺𝑘) ∈ 𝐵)
13 oveq1 5895 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝐺𝑘) → (𝑧𝐴) = ((𝐺𝑘) − 𝐴))
1413fveq2d 5531 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐺𝑘) → (abs‘(𝑧𝐴)) = (abs‘((𝐺𝑘) − 𝐴)))
1514breq1d 4025 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐺𝑘) → ((abs‘(𝑧𝐴)) < 𝑦 ↔ (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
16 fveq2 5527 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝐺𝑘) → (𝐹𝑧) = (𝐹‘(𝐺𝑘)))
1716oveq1d 5903 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝐺𝑘) → ((𝐹𝑧) − (𝐹𝐴)) = ((𝐹‘(𝐺𝑘)) − (𝐹𝐴)))
1817fveq2d 5531 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐺𝑘) → (abs‘((𝐹𝑧) − (𝐹𝐴))) = (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))))
1918breq1d 4025 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐺𝑘) → ((abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥 ↔ (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2015, 19imbi12d 234 . . . . . . . . . . . . . . 15 (𝑧 = (𝐺𝑘) → (((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥) ↔ ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥)))
2120rspcva 2851 . . . . . . . . . . . . . 14 (((𝐺𝑘) ∈ 𝐵 ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) → ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2212, 21sylan 283 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) → ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2322an32s 568 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) ∧ 𝑘𝑍) → ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2410, 23sylan2 286 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2524anassrs 400 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ+) ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2625ralimdva 2554 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2726reximdva 2589 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2827ex 115 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → (∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥)))
299, 28mpid 42 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
3029rexlimdva 2604 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ+𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
3130adantr 276 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑦 ∈ ℝ+𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
321, 31mpd 13 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥)
3332ralrimiva 2560 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥)
34 climcn1.6 . . 3 (𝜑𝐻𝑊)
35 climcn1.9 . . 3 ((𝜑𝑘𝑍) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
36 fveq2 5527 . . . . 5 (𝑧 = 𝐴 → (𝐹𝑧) = (𝐹𝐴))
3736eleq1d 2256 . . . 4 (𝑧 = 𝐴 → ((𝐹𝑧) ∈ ℂ ↔ (𝐹𝐴) ∈ ℂ))
38 climcn1.4 . . . . 5 ((𝜑𝑧𝐵) → (𝐹𝑧) ∈ ℂ)
3938ralrimiva 2560 . . . 4 (𝜑 → ∀𝑧𝐵 (𝐹𝑧) ∈ ℂ)
40 climcn1.3 . . . 4 (𝜑𝐴𝐵)
4137, 39, 40rspcdva 2858 . . 3 (𝜑 → (𝐹𝐴) ∈ ℂ)
4216eleq1d 2256 . . . 4 (𝑧 = (𝐺𝑘) → ((𝐹𝑧) ∈ ℂ ↔ (𝐹‘(𝐺𝑘)) ∈ ℂ))
4339adantr 276 . . . 4 ((𝜑𝑘𝑍) → ∀𝑧𝐵 (𝐹𝑧) ∈ ℂ)
4442, 43, 11rspcdva 2858 . . 3 ((𝜑𝑘𝑍) → (𝐹‘(𝐺𝑘)) ∈ ℂ)
452, 3, 34, 35, 41, 44clim2c 11306 . 2 (𝜑 → (𝐻 ⇝ (𝐹𝐴) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
4633, 45mpbird 167 1 (𝜑𝐻 ⇝ (𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1363  wcel 2158  wral 2465  wrex 2466   class class class wbr 4015  cfv 5228  (class class class)co 5888  cc 7823   < clt 8006  cmin 8142  cz 9267  cuz 9542  +crp 9667  abscabs 11020  cli 11300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-0id 7933  ax-rnegex 7934  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-inn 8934  df-n0 9191  df-z 9268  df-uz 9543  df-clim 11301
This theorem is referenced by:  climcn1lem  11341  climcncf  14367
  Copyright terms: Public domain W3C validator