Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpan2d | GIF version |
Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
mpan2d.1 | ⊢ (𝜑 → 𝜒) |
mpan2d.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
mpan2d | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpan2d.1 | . 2 ⊢ (𝜑 → 𝜒) | |
2 | mpan2d.2 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
3 | 2 | expd 258 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
4 | 1, 3 | mpid 42 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: mpand 429 mpan2i 431 ralxfrd 4456 rexxfrd 4457 elunirn 5757 onunsnss 6906 xpfi 6919 snon0 6925 genprndl 7495 genprndu 7496 addlsub 8301 letrp1 8776 peano2uz2 9331 uzind 9335 xrre 9789 xrre2 9790 flqge 10250 monoord 10444 facwordi 10686 facavg 10692 dvdsmultr1 11804 ltoddhalfle 11863 dvdsgcdb 11979 dfgcd2 11980 coprmgcdb 12053 coprmdvds2 12058 exprmfct 12103 prmdvdsfz 12104 prmfac1 12117 rpexp 12118 eulerthlemh 12196 pcpremul 12258 pcdvdsb 12284 pcprmpw2 12297 pockthlem 12319 lgsne0 13990 |
Copyright terms: Public domain | W3C validator |