| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpan2d | GIF version | ||
| Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| mpan2d.1 | ⊢ (𝜑 → 𝜒) |
| mpan2d.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| mpan2d | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpan2d.1 | . 2 ⊢ (𝜑 → 𝜒) | |
| 2 | mpan2d.2 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 3 | 2 | expd 258 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 4 | 1, 3 | mpid 42 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: mpand 429 mpan2i 431 ralxfrd 4498 rexxfrd 4499 elunirn 5816 onunsnss 6987 xpfi 7002 snon0 7010 genprndl 7607 genprndu 7608 addlsub 8415 letrp1 8894 peano2uz2 9452 uzind 9456 xrre 9914 xrre2 9915 flqge 10391 monoord 10596 facwordi 10851 facavg 10857 dvdsmultr1 12015 ltoddhalfle 12077 dvdsgcdb 12207 dfgcd2 12208 coprmgcdb 12283 coprmdvds2 12288 exprmfct 12333 prmdvdsfz 12334 prmfac1 12347 rpexp 12348 eulerthlemh 12426 pcpremul 12489 pcdvdsb 12516 pcprmpw2 12529 pockthlem 12552 4sqlem11 12597 lgsne0 15387 gausslemma2dlem1a 15407 gausslemma2dlem2 15411 lgseisenlem1 15419 lgseisenlem2 15420 lgsquadlem1 15426 lgsquadlem2 15427 lgsquadlem3 15428 lgsquad2lem1 15430 lgsquad2lem2 15431 |
| Copyright terms: Public domain | W3C validator |