![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpan2d | GIF version |
Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
mpan2d.1 | ⊢ (𝜑 → 𝜒) |
mpan2d.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
mpan2d | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpan2d.1 | . 2 ⊢ (𝜑 → 𝜒) | |
2 | mpan2d.2 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
3 | 2 | expd 258 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
4 | 1, 3 | mpid 42 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: mpand 429 mpan2i 431 ralxfrd 4462 rexxfrd 4463 elunirn 5766 onunsnss 6915 xpfi 6928 snon0 6934 genprndl 7519 genprndu 7520 addlsub 8326 letrp1 8804 peano2uz2 9359 uzind 9363 xrre 9819 xrre2 9820 flqge 10281 monoord 10475 facwordi 10719 facavg 10725 dvdsmultr1 11837 ltoddhalfle 11897 dvdsgcdb 12013 dfgcd2 12014 coprmgcdb 12087 coprmdvds2 12092 exprmfct 12137 prmdvdsfz 12138 prmfac1 12151 rpexp 12152 eulerthlemh 12230 pcpremul 12292 pcdvdsb 12318 pcprmpw2 12331 pockthlem 12353 lgsne0 14409 lgseisenlem1 14420 lgseisenlem2 14421 |
Copyright terms: Public domain | W3C validator |