| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpan2d | GIF version | ||
| Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| mpan2d.1 | ⊢ (𝜑 → 𝜒) |
| mpan2d.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| mpan2d | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpan2d.1 | . 2 ⊢ (𝜑 → 𝜒) | |
| 2 | mpan2d.2 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 3 | 2 | expd 258 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 4 | 1, 3 | mpid 42 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: mpand 429 mpan2i 431 ralxfrd 4530 rexxfrd 4531 elunirn 5863 onunsnss 7047 xpfi 7062 snon0 7070 genprndl 7676 genprndu 7677 addlsub 8484 letrp1 8963 peano2uz2 9522 uzind 9526 xrre 9984 xrre2 9985 flqge 10469 monoord 10674 facwordi 10929 facavg 10935 dvdsmultr1 12308 ltoddhalfle 12370 dvdsgcdb 12500 dfgcd2 12501 coprmgcdb 12576 coprmdvds2 12581 exprmfct 12626 prmdvdsfz 12627 prmfac1 12640 rpexp 12641 eulerthlemh 12719 pcpremul 12782 pcdvdsb 12809 pcprmpw2 12822 pockthlem 12845 4sqlem11 12890 lgsne0 15682 gausslemma2dlem1a 15702 gausslemma2dlem2 15706 lgseisenlem1 15714 lgseisenlem2 15715 lgsquadlem1 15721 lgsquadlem2 15722 lgsquadlem3 15723 lgsquad2lem1 15725 lgsquad2lem2 15726 |
| Copyright terms: Public domain | W3C validator |