| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpan2d | GIF version | ||
| Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| mpan2d.1 | ⊢ (𝜑 → 𝜒) |
| mpan2d.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| mpan2d | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpan2d.1 | . 2 ⊢ (𝜑 → 𝜒) | |
| 2 | mpan2d.2 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 3 | 2 | expd 258 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 4 | 1, 3 | mpid 42 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: mpand 429 mpan2i 431 ralxfrd 4553 rexxfrd 4554 elunirn 5896 onunsnss 7087 xpfi 7102 snon0 7110 genprndl 7716 genprndu 7717 addlsub 8524 letrp1 9003 peano2uz2 9562 uzind 9566 xrre 10024 xrre2 10025 flqge 10510 monoord 10715 facwordi 10970 facavg 10976 dvdsmultr1 12350 ltoddhalfle 12412 dvdsgcdb 12542 dfgcd2 12543 coprmgcdb 12618 coprmdvds2 12623 exprmfct 12668 prmdvdsfz 12669 prmfac1 12682 rpexp 12683 eulerthlemh 12761 pcpremul 12824 pcdvdsb 12851 pcprmpw2 12864 pockthlem 12887 4sqlem11 12932 lgsne0 15725 gausslemma2dlem1a 15745 gausslemma2dlem2 15749 lgseisenlem1 15757 lgseisenlem2 15758 lgsquadlem1 15764 lgsquadlem2 15765 lgsquadlem3 15766 lgsquad2lem1 15768 lgsquad2lem2 15769 |
| Copyright terms: Public domain | W3C validator |