| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mpan2d | GIF version | ||
| Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) | 
| Ref | Expression | 
|---|---|
| mpan2d.1 | ⊢ (𝜑 → 𝜒) | 
| mpan2d.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | 
| Ref | Expression | 
|---|---|
| mpan2d | ⊢ (𝜑 → (𝜓 → 𝜃)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mpan2d.1 | . 2 ⊢ (𝜑 → 𝜒) | |
| 2 | mpan2d.2 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 3 | 2 | expd 258 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | 
| 4 | 1, 3 | mpid 42 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 | 
| This theorem is referenced by: mpand 429 mpan2i 431 ralxfrd 4497 rexxfrd 4498 elunirn 5813 onunsnss 6978 xpfi 6993 snon0 7001 genprndl 7588 genprndu 7589 addlsub 8396 letrp1 8875 peano2uz2 9433 uzind 9437 xrre 9895 xrre2 9896 flqge 10372 monoord 10577 facwordi 10832 facavg 10838 dvdsmultr1 11996 ltoddhalfle 12058 dvdsgcdb 12180 dfgcd2 12181 coprmgcdb 12256 coprmdvds2 12261 exprmfct 12306 prmdvdsfz 12307 prmfac1 12320 rpexp 12321 eulerthlemh 12399 pcpremul 12462 pcdvdsb 12489 pcprmpw2 12502 pockthlem 12525 4sqlem11 12570 lgsne0 15279 gausslemma2dlem1a 15299 gausslemma2dlem2 15303 lgseisenlem1 15311 lgseisenlem2 15312 lgsquadlem1 15318 lgsquadlem2 15319 lgsquadlem3 15320 lgsquad2lem1 15322 lgsquad2lem2 15323 | 
| Copyright terms: Public domain | W3C validator |