![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpan2d | GIF version |
Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
mpan2d.1 | ⊢ (𝜑 → 𝜒) |
mpan2d.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
mpan2d | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpan2d.1 | . 2 ⊢ (𝜑 → 𝜒) | |
2 | mpan2d.2 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
3 | 2 | expd 258 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
4 | 1, 3 | mpid 42 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: mpand 429 mpan2i 431 ralxfrd 4463 rexxfrd 4464 elunirn 5767 onunsnss 6916 xpfi 6929 snon0 6935 genprndl 7520 genprndu 7521 addlsub 8327 letrp1 8805 peano2uz2 9360 uzind 9364 xrre 9820 xrre2 9821 flqge 10282 monoord 10476 facwordi 10720 facavg 10726 dvdsmultr1 11838 ltoddhalfle 11898 dvdsgcdb 12014 dfgcd2 12015 coprmgcdb 12088 coprmdvds2 12093 exprmfct 12138 prmdvdsfz 12139 prmfac1 12152 rpexp 12153 eulerthlemh 12231 pcpremul 12293 pcdvdsb 12319 pcprmpw2 12332 pockthlem 12354 lgsne0 14442 lgseisenlem1 14453 lgseisenlem2 14454 |
Copyright terms: Public domain | W3C validator |