| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpan2d | GIF version | ||
| Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| mpan2d.1 | ⊢ (𝜑 → 𝜒) |
| mpan2d.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| mpan2d | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpan2d.1 | . 2 ⊢ (𝜑 → 𝜒) | |
| 2 | mpan2d.2 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 3 | 2 | expd 258 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 4 | 1, 3 | mpid 42 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: mpand 429 mpan2i 431 ralxfrd 4513 rexxfrd 4514 elunirn 5842 onunsnss 7021 xpfi 7036 snon0 7044 genprndl 7641 genprndu 7642 addlsub 8449 letrp1 8928 peano2uz2 9487 uzind 9491 xrre 9949 xrre2 9950 flqge 10432 monoord 10637 facwordi 10892 facavg 10898 dvdsmultr1 12186 ltoddhalfle 12248 dvdsgcdb 12378 dfgcd2 12379 coprmgcdb 12454 coprmdvds2 12459 exprmfct 12504 prmdvdsfz 12505 prmfac1 12518 rpexp 12519 eulerthlemh 12597 pcpremul 12660 pcdvdsb 12687 pcprmpw2 12700 pockthlem 12723 4sqlem11 12768 lgsne0 15559 gausslemma2dlem1a 15579 gausslemma2dlem2 15583 lgseisenlem1 15591 lgseisenlem2 15592 lgsquadlem1 15598 lgsquadlem2 15599 lgsquadlem3 15600 lgsquad2lem1 15602 lgsquad2lem2 15603 |
| Copyright terms: Public domain | W3C validator |