Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpan2d | GIF version |
Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
mpan2d.1 | ⊢ (𝜑 → 𝜒) |
mpan2d.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
mpan2d | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpan2d.1 | . 2 ⊢ (𝜑 → 𝜒) | |
2 | mpan2d.2 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
3 | 2 | expd 256 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
4 | 1, 3 | mpid 42 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 |
This theorem is referenced by: mpand 426 mpan2i 428 ralxfrd 4439 rexxfrd 4440 elunirn 5733 onunsnss 6878 xpfi 6891 snon0 6897 genprndl 7458 genprndu 7459 addlsub 8264 letrp1 8739 peano2uz2 9294 uzind 9298 xrre 9752 xrre2 9753 flqge 10213 monoord 10407 facwordi 10649 facavg 10655 dvdsmultr1 11767 ltoddhalfle 11826 dvdsgcdb 11942 dfgcd2 11943 coprmgcdb 12016 coprmdvds2 12021 exprmfct 12066 prmdvdsfz 12067 prmfac1 12080 rpexp 12081 eulerthlemh 12159 pcpremul 12221 pcdvdsb 12247 pcprmpw2 12260 pockthlem 12282 lgsne0 13539 |
Copyright terms: Public domain | W3C validator |