![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvimacnv | GIF version |
Description: The argument of a function value belongs to the preimage of any class containing the function value. Raph Levien remarks: "This proof is unsatisfying, because it seems to me that funimass2 5296 could probably be strengthened to a biconditional." (Contributed by Raph Levien, 20-Nov-2006.) |
Ref | Expression |
---|---|
fvimacnv | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfvop 5630 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹‘𝐴)⟩ ∈ 𝐹) | |
2 | funfvex 5534 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ V) | |
3 | opelcnvg 4809 | . . . . . 6 ⊢ (((𝐹‘𝐴) ∈ V ∧ 𝐴 ∈ dom 𝐹) → (⟨(𝐹‘𝐴), 𝐴⟩ ∈ ◡𝐹 ↔ ⟨𝐴, (𝐹‘𝐴)⟩ ∈ 𝐹)) | |
4 | 2, 3 | sylancom 420 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (⟨(𝐹‘𝐴), 𝐴⟩ ∈ ◡𝐹 ↔ ⟨𝐴, (𝐹‘𝐴)⟩ ∈ 𝐹)) |
5 | 1, 4 | mpbird 167 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ⟨(𝐹‘𝐴), 𝐴⟩ ∈ ◡𝐹) |
6 | elimasng 4998 | . . . . 5 ⊢ (((𝐹‘𝐴) ∈ V ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ (◡𝐹 “ {(𝐹‘𝐴)}) ↔ ⟨(𝐹‘𝐴), 𝐴⟩ ∈ ◡𝐹)) | |
7 | 2, 6 | sylancom 420 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ (◡𝐹 “ {(𝐹‘𝐴)}) ↔ ⟨(𝐹‘𝐴), 𝐴⟩ ∈ ◡𝐹)) |
8 | 5, 7 | mpbird 167 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 𝐴 ∈ (◡𝐹 “ {(𝐹‘𝐴)})) |
9 | snssg 3728 | . . . . . . . 8 ⊢ ((𝐹‘𝐴) ∈ V → ((𝐹‘𝐴) ∈ 𝐵 ↔ {(𝐹‘𝐴)} ⊆ 𝐵)) | |
10 | 2, 9 | syl 14 | . . . . . . 7 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 ↔ {(𝐹‘𝐴)} ⊆ 𝐵)) |
11 | imass2 5006 | . . . . . . 7 ⊢ ({(𝐹‘𝐴)} ⊆ 𝐵 → (◡𝐹 “ {(𝐹‘𝐴)}) ⊆ (◡𝐹 “ 𝐵)) | |
12 | 10, 11 | biimtrdi 163 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 → (◡𝐹 “ {(𝐹‘𝐴)}) ⊆ (◡𝐹 “ 𝐵))) |
13 | 12 | imp 124 | . . . . 5 ⊢ (((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) ∧ (𝐹‘𝐴) ∈ 𝐵) → (◡𝐹 “ {(𝐹‘𝐴)}) ⊆ (◡𝐹 “ 𝐵)) |
14 | 13 | sseld 3156 | . . . 4 ⊢ (((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) ∧ (𝐹‘𝐴) ∈ 𝐵) → (𝐴 ∈ (◡𝐹 “ {(𝐹‘𝐴)}) → 𝐴 ∈ (◡𝐹 “ 𝐵))) |
15 | 14 | ex 115 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 → (𝐴 ∈ (◡𝐹 “ {(𝐹‘𝐴)}) → 𝐴 ∈ (◡𝐹 “ 𝐵)))) |
16 | 8, 15 | mpid 42 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 → 𝐴 ∈ (◡𝐹 “ 𝐵))) |
17 | fvimacnvi 5632 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → (𝐹‘𝐴) ∈ 𝐵) | |
18 | 17 | ex 115 | . . 3 ⊢ (Fun 𝐹 → (𝐴 ∈ (◡𝐹 “ 𝐵) → (𝐹‘𝐴) ∈ 𝐵)) |
19 | 18 | adantr 276 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ (◡𝐹 “ 𝐵) → (𝐹‘𝐴) ∈ 𝐵)) |
20 | 16, 19 | impbid 129 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2148 Vcvv 2739 ⊆ wss 3131 {csn 3594 ⟨cop 3597 ◡ccnv 4627 dom cdm 4628 “ cima 4631 Fun wfun 5212 ‘cfv 5218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 |
This theorem is referenced by: funimass3 5634 elpreima 5637 fisumss 11402 |
Copyright terms: Public domain | W3C validator |