ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvimacnv GIF version

Theorem fvimacnv 5674
Description: The argument of a function value belongs to the preimage of any class containing the function value. Raph Levien remarks: "This proof is unsatisfying, because it seems to me that funimass2 5333 could probably be strengthened to a biconditional." (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
fvimacnv ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵)))

Proof of Theorem fvimacnv
StepHypRef Expression
1 funfvop 5671 . . . . 5 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
2 funfvex 5572 . . . . . 6 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ V)
3 opelcnvg 4843 . . . . . 6 (((𝐹𝐴) ∈ V ∧ 𝐴 ∈ dom 𝐹) → (⟨(𝐹𝐴), 𝐴⟩ ∈ 𝐹 ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹))
42, 3sylancom 420 . . . . 5 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (⟨(𝐹𝐴), 𝐴⟩ ∈ 𝐹 ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹))
51, 4mpbird 167 . . . 4 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨(𝐹𝐴), 𝐴⟩ ∈ 𝐹)
6 elimasng 5034 . . . . 5 (((𝐹𝐴) ∈ V ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ (𝐹 “ {(𝐹𝐴)}) ↔ ⟨(𝐹𝐴), 𝐴⟩ ∈ 𝐹))
72, 6sylancom 420 . . . 4 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐴 ∈ (𝐹 “ {(𝐹𝐴)}) ↔ ⟨(𝐹𝐴), 𝐴⟩ ∈ 𝐹))
85, 7mpbird 167 . . 3 ((Fun 𝐹𝐴 ∈ dom 𝐹) → 𝐴 ∈ (𝐹 “ {(𝐹𝐴)}))
9 snssg 3753 . . . . . . . 8 ((𝐹𝐴) ∈ V → ((𝐹𝐴) ∈ 𝐵 ↔ {(𝐹𝐴)} ⊆ 𝐵))
102, 9syl 14 . . . . . . 7 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵 ↔ {(𝐹𝐴)} ⊆ 𝐵))
11 imass2 5042 . . . . . . 7 ({(𝐹𝐴)} ⊆ 𝐵 → (𝐹 “ {(𝐹𝐴)}) ⊆ (𝐹𝐵))
1210, 11biimtrdi 163 . . . . . 6 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵 → (𝐹 “ {(𝐹𝐴)}) ⊆ (𝐹𝐵)))
1312imp 124 . . . . 5 (((Fun 𝐹𝐴 ∈ dom 𝐹) ∧ (𝐹𝐴) ∈ 𝐵) → (𝐹 “ {(𝐹𝐴)}) ⊆ (𝐹𝐵))
1413sseld 3179 . . . 4 (((Fun 𝐹𝐴 ∈ dom 𝐹) ∧ (𝐹𝐴) ∈ 𝐵) → (𝐴 ∈ (𝐹 “ {(𝐹𝐴)}) → 𝐴 ∈ (𝐹𝐵)))
1514ex 115 . . 3 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵 → (𝐴 ∈ (𝐹 “ {(𝐹𝐴)}) → 𝐴 ∈ (𝐹𝐵))))
168, 15mpid 42 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵)))
17 fvimacnvi 5673 . . . 4 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → (𝐹𝐴) ∈ 𝐵)
1817ex 115 . . 3 (Fun 𝐹 → (𝐴 ∈ (𝐹𝐵) → (𝐹𝐴) ∈ 𝐵))
1918adantr 276 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐴 ∈ (𝐹𝐵) → (𝐹𝐴) ∈ 𝐵))
2016, 19impbid 129 1 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ 𝐵𝐴 ∈ (𝐹𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2164  Vcvv 2760  wss 3154  {csn 3619  cop 3622  ccnv 4659  dom cdm 4660  cima 4663  Fun wfun 5249  cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263
This theorem is referenced by:  funimass3  5675  elpreima  5678  fisumss  11538  psrbaglesuppg  14169
  Copyright terms: Public domain W3C validator