ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgpropdg GIF version

Theorem mulgpropdg 13237
Description: Two structures with the same group-nature have the same group multiple function. 𝐾 is expected to either be V (when strong equality is available) or 𝐵 (when closure is available). (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
mulgpropdg.m (𝜑· = (.g𝐺))
mulgpropdg.n (𝜑× = (.g𝐻))
mulgpropdg.g (𝜑𝐺𝑉)
mulgpropdg.h (𝜑𝐻𝑊)
mulgpropd.b1 (𝜑𝐵 = (Base‘𝐺))
mulgpropd.b2 (𝜑𝐵 = (Base‘𝐻))
mulgpropd.i (𝜑𝐵𝐾)
mulgpropd.k ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(+g𝐺)𝑦) ∈ 𝐾)
mulgpropd.e ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
Assertion
Ref Expression
mulgpropdg (𝜑· = × )
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   · (𝑥,𝑦)   × (𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem mulgpropdg
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgpropd.b1 . . . . . . 7 (𝜑𝐵 = (Base‘𝐺))
2 mulgpropd.b2 . . . . . . 7 (𝜑𝐵 = (Base‘𝐻))
3 mulgpropdg.g . . . . . . 7 (𝜑𝐺𝑉)
4 mulgpropdg.h . . . . . . 7 (𝜑𝐻𝑊)
5 mulgpropd.i . . . . . . . . . 10 (𝜑𝐵𝐾)
6 ssel 3174 . . . . . . . . . . 11 (𝐵𝐾 → (𝑥𝐵𝑥𝐾))
7 ssel 3174 . . . . . . . . . . 11 (𝐵𝐾 → (𝑦𝐵𝑦𝐾))
86, 7anim12d 335 . . . . . . . . . 10 (𝐵𝐾 → ((𝑥𝐵𝑦𝐵) → (𝑥𝐾𝑦𝐾)))
95, 8syl 14 . . . . . . . . 9 (𝜑 → ((𝑥𝐵𝑦𝐵) → (𝑥𝐾𝑦𝐾)))
109imp 124 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐾𝑦𝐾))
11 mulgpropd.e . . . . . . . 8 ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
1210, 11syldan 282 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
131, 2, 3, 4, 12grpidpropdg 12960 . . . . . 6 (𝜑 → (0g𝐺) = (0g𝐻))
14133ad2ant1 1020 . . . . 5 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → (0g𝐺) = (0g𝐻))
15 1zzd 9347 . . . . . . . 8 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → 1 ∈ ℤ)
16 nnuz 9631 . . . . . . . . 9 ℕ = (ℤ‘1)
1753ad2ant1 1020 . . . . . . . . . 10 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → 𝐵𝐾)
18 simp3 1001 . . . . . . . . . 10 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → 𝑏𝐵)
1917, 18sseldd 3181 . . . . . . . . 9 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → 𝑏𝐾)
2016, 19ialgrlemconst 12184 . . . . . . . 8 (((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) ∧ 𝑥 ∈ (ℤ‘1)) → ((ℕ × {𝑏})‘𝑥) ∈ 𝐾)
21 mulgpropd.k . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(+g𝐺)𝑦) ∈ 𝐾)
22213ad2antl1 1161 . . . . . . . 8 (((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(+g𝐺)𝑦) ∈ 𝐾)
23113ad2antl1 1161 . . . . . . . 8 (((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
2415, 20, 22, 23seqfeq3 10603 . . . . . . 7 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → seq1((+g𝐺), (ℕ × {𝑏})) = seq1((+g𝐻), (ℕ × {𝑏})))
2524fveq1d 5557 . . . . . 6 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎) = (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎))
261, 2, 3, 4, 12grpinvpropdg 13150 . . . . . . . 8 (𝜑 → (invg𝐺) = (invg𝐻))
27263ad2ant1 1020 . . . . . . 7 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → (invg𝐺) = (invg𝐻))
2824fveq1d 5557 . . . . . . 7 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → (seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎) = (seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎))
2927, 28fveq12d 5562 . . . . . 6 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎)) = ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎)))
3025, 29ifeq12d 3577 . . . . 5 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎))) = if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎))))
3114, 30ifeq12d 3577 . . . 4 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎)))) = if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎)))))
3231mpoeq3dva 5983 . . 3 (𝜑 → (𝑎 ∈ ℤ, 𝑏𝐵 ↦ if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎))))) = (𝑎 ∈ ℤ, 𝑏𝐵 ↦ if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎))))))
33 eqidd 2194 . . . 4 (𝜑 → ℤ = ℤ)
34 eqidd 2194 . . . 4 (𝜑 → if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎)))) = if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎)))))
3533, 1, 34mpoeq123dv 5981 . . 3 (𝜑 → (𝑎 ∈ ℤ, 𝑏𝐵 ↦ if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎))))) = (𝑎 ∈ ℤ, 𝑏 ∈ (Base‘𝐺) ↦ if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎))))))
36 eqidd 2194 . . . 4 (𝜑 → if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎)))) = if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎)))))
3733, 2, 36mpoeq123dv 5981 . . 3 (𝜑 → (𝑎 ∈ ℤ, 𝑏𝐵 ↦ if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎))))) = (𝑎 ∈ ℤ, 𝑏 ∈ (Base‘𝐻) ↦ if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎))))))
3832, 35, 373eqtr3d 2234 . 2 (𝜑 → (𝑎 ∈ ℤ, 𝑏 ∈ (Base‘𝐺) ↦ if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎))))) = (𝑎 ∈ ℤ, 𝑏 ∈ (Base‘𝐻) ↦ if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎))))))
39 mulgpropdg.m . . 3 (𝜑· = (.g𝐺))
40 eqid 2193 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
41 eqid 2193 . . . . 5 (+g𝐺) = (+g𝐺)
42 eqid 2193 . . . . 5 (0g𝐺) = (0g𝐺)
43 eqid 2193 . . . . 5 (invg𝐺) = (invg𝐺)
44 eqid 2193 . . . . 5 (.g𝐺) = (.g𝐺)
4540, 41, 42, 43, 44mulgfvalg 13194 . . . 4 (𝐺𝑉 → (.g𝐺) = (𝑎 ∈ ℤ, 𝑏 ∈ (Base‘𝐺) ↦ if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎))))))
463, 45syl 14 . . 3 (𝜑 → (.g𝐺) = (𝑎 ∈ ℤ, 𝑏 ∈ (Base‘𝐺) ↦ if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎))))))
4739, 46eqtrd 2226 . 2 (𝜑· = (𝑎 ∈ ℤ, 𝑏 ∈ (Base‘𝐺) ↦ if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎))))))
48 mulgpropdg.n . . 3 (𝜑× = (.g𝐻))
49 eqid 2193 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
50 eqid 2193 . . . . 5 (+g𝐻) = (+g𝐻)
51 eqid 2193 . . . . 5 (0g𝐻) = (0g𝐻)
52 eqid 2193 . . . . 5 (invg𝐻) = (invg𝐻)
53 eqid 2193 . . . . 5 (.g𝐻) = (.g𝐻)
5449, 50, 51, 52, 53mulgfvalg 13194 . . . 4 (𝐻𝑊 → (.g𝐻) = (𝑎 ∈ ℤ, 𝑏 ∈ (Base‘𝐻) ↦ if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎))))))
554, 54syl 14 . . 3 (𝜑 → (.g𝐻) = (𝑎 ∈ ℤ, 𝑏 ∈ (Base‘𝐻) ↦ if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎))))))
5648, 55eqtrd 2226 . 2 (𝜑× = (𝑎 ∈ ℤ, 𝑏 ∈ (Base‘𝐻) ↦ if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎))))))
5738, 47, 563eqtr4d 2236 1 (𝜑· = × )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  wss 3154  ifcif 3558  {csn 3619   class class class wbr 4030   × cxp 4658  cfv 5255  (class class class)co 5919  cmpo 5921  0cc0 7874  1c1 7875   < clt 8056  -cneg 8193  cn 8984  cz 9320  seqcseq 10521  Basecbs 12621  +gcplusg 12698  0gc0g 12870  invgcminusg 13076  .gcmg 13192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-seqfrec 10522  df-ndx 12624  df-slot 12625  df-base 12627  df-0g 12872  df-minusg 13079  df-mulg 13193
This theorem is referenced by:  mulgass3  13584
  Copyright terms: Public domain W3C validator