ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgpropdg GIF version

Theorem mulgpropdg 13696
Description: Two structures with the same group-nature have the same group multiple function. 𝐾 is expected to either be V (when strong equality is available) or 𝐵 (when closure is available). (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
mulgpropdg.m (𝜑· = (.g𝐺))
mulgpropdg.n (𝜑× = (.g𝐻))
mulgpropdg.g (𝜑𝐺𝑉)
mulgpropdg.h (𝜑𝐻𝑊)
mulgpropd.b1 (𝜑𝐵 = (Base‘𝐺))
mulgpropd.b2 (𝜑𝐵 = (Base‘𝐻))
mulgpropd.i (𝜑𝐵𝐾)
mulgpropd.k ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(+g𝐺)𝑦) ∈ 𝐾)
mulgpropd.e ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
Assertion
Ref Expression
mulgpropdg (𝜑· = × )
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   · (𝑥,𝑦)   × (𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem mulgpropdg
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgpropd.b1 . . . . . . 7 (𝜑𝐵 = (Base‘𝐺))
2 mulgpropd.b2 . . . . . . 7 (𝜑𝐵 = (Base‘𝐻))
3 mulgpropdg.g . . . . . . 7 (𝜑𝐺𝑉)
4 mulgpropdg.h . . . . . . 7 (𝜑𝐻𝑊)
5 mulgpropd.i . . . . . . . . . 10 (𝜑𝐵𝐾)
6 ssel 3218 . . . . . . . . . . 11 (𝐵𝐾 → (𝑥𝐵𝑥𝐾))
7 ssel 3218 . . . . . . . . . . 11 (𝐵𝐾 → (𝑦𝐵𝑦𝐾))
86, 7anim12d 335 . . . . . . . . . 10 (𝐵𝐾 → ((𝑥𝐵𝑦𝐵) → (𝑥𝐾𝑦𝐾)))
95, 8syl 14 . . . . . . . . 9 (𝜑 → ((𝑥𝐵𝑦𝐵) → (𝑥𝐾𝑦𝐾)))
109imp 124 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐾𝑦𝐾))
11 mulgpropd.e . . . . . . . 8 ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
1210, 11syldan 282 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
131, 2, 3, 4, 12grpidpropdg 13402 . . . . . 6 (𝜑 → (0g𝐺) = (0g𝐻))
14133ad2ant1 1042 . . . . 5 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → (0g𝐺) = (0g𝐻))
15 1zzd 9469 . . . . . . . 8 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → 1 ∈ ℤ)
16 nnuz 9754 . . . . . . . . 9 ℕ = (ℤ‘1)
1753ad2ant1 1042 . . . . . . . . . 10 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → 𝐵𝐾)
18 simp3 1023 . . . . . . . . . 10 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → 𝑏𝐵)
1917, 18sseldd 3225 . . . . . . . . 9 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → 𝑏𝐾)
2016, 19ialgrlemconst 12560 . . . . . . . 8 (((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) ∧ 𝑥 ∈ (ℤ‘1)) → ((ℕ × {𝑏})‘𝑥) ∈ 𝐾)
21 mulgpropd.k . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(+g𝐺)𝑦) ∈ 𝐾)
22213ad2antl1 1183 . . . . . . . 8 (((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(+g𝐺)𝑦) ∈ 𝐾)
23113ad2antl1 1183 . . . . . . . 8 (((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
2415, 20, 22, 23seqfeq3 10746 . . . . . . 7 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → seq1((+g𝐺), (ℕ × {𝑏})) = seq1((+g𝐻), (ℕ × {𝑏})))
2524fveq1d 5628 . . . . . 6 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎) = (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎))
261, 2, 3, 4, 12grpinvpropdg 13603 . . . . . . . 8 (𝜑 → (invg𝐺) = (invg𝐻))
27263ad2ant1 1042 . . . . . . 7 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → (invg𝐺) = (invg𝐻))
2824fveq1d 5628 . . . . . . 7 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → (seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎) = (seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎))
2927, 28fveq12d 5633 . . . . . 6 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎)) = ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎)))
3025, 29ifeq12d 3622 . . . . 5 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎))) = if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎))))
3114, 30ifeq12d 3622 . . . 4 ((𝜑𝑎 ∈ ℤ ∧ 𝑏𝐵) → if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎)))) = if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎)))))
3231mpoeq3dva 6067 . . 3 (𝜑 → (𝑎 ∈ ℤ, 𝑏𝐵 ↦ if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎))))) = (𝑎 ∈ ℤ, 𝑏𝐵 ↦ if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎))))))
33 eqidd 2230 . . . 4 (𝜑 → ℤ = ℤ)
34 eqidd 2230 . . . 4 (𝜑 → if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎)))) = if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎)))))
3533, 1, 34mpoeq123dv 6065 . . 3 (𝜑 → (𝑎 ∈ ℤ, 𝑏𝐵 ↦ if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎))))) = (𝑎 ∈ ℤ, 𝑏 ∈ (Base‘𝐺) ↦ if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎))))))
36 eqidd 2230 . . . 4 (𝜑 → if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎)))) = if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎)))))
3733, 2, 36mpoeq123dv 6065 . . 3 (𝜑 → (𝑎 ∈ ℤ, 𝑏𝐵 ↦ if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎))))) = (𝑎 ∈ ℤ, 𝑏 ∈ (Base‘𝐻) ↦ if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎))))))
3832, 35, 373eqtr3d 2270 . 2 (𝜑 → (𝑎 ∈ ℤ, 𝑏 ∈ (Base‘𝐺) ↦ if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎))))) = (𝑎 ∈ ℤ, 𝑏 ∈ (Base‘𝐻) ↦ if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎))))))
39 mulgpropdg.m . . 3 (𝜑· = (.g𝐺))
40 eqid 2229 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
41 eqid 2229 . . . . 5 (+g𝐺) = (+g𝐺)
42 eqid 2229 . . . . 5 (0g𝐺) = (0g𝐺)
43 eqid 2229 . . . . 5 (invg𝐺) = (invg𝐺)
44 eqid 2229 . . . . 5 (.g𝐺) = (.g𝐺)
4540, 41, 42, 43, 44mulgfvalg 13653 . . . 4 (𝐺𝑉 → (.g𝐺) = (𝑎 ∈ ℤ, 𝑏 ∈ (Base‘𝐺) ↦ if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎))))))
463, 45syl 14 . . 3 (𝜑 → (.g𝐺) = (𝑎 ∈ ℤ, 𝑏 ∈ (Base‘𝐺) ↦ if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎))))))
4739, 46eqtrd 2262 . 2 (𝜑· = (𝑎 ∈ ℤ, 𝑏 ∈ (Base‘𝐺) ↦ if(𝑎 = 0, (0g𝐺), if(0 < 𝑎, (seq1((+g𝐺), (ℕ × {𝑏}))‘𝑎), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑏}))‘-𝑎))))))
48 mulgpropdg.n . . 3 (𝜑× = (.g𝐻))
49 eqid 2229 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
50 eqid 2229 . . . . 5 (+g𝐻) = (+g𝐻)
51 eqid 2229 . . . . 5 (0g𝐻) = (0g𝐻)
52 eqid 2229 . . . . 5 (invg𝐻) = (invg𝐻)
53 eqid 2229 . . . . 5 (.g𝐻) = (.g𝐻)
5449, 50, 51, 52, 53mulgfvalg 13653 . . . 4 (𝐻𝑊 → (.g𝐻) = (𝑎 ∈ ℤ, 𝑏 ∈ (Base‘𝐻) ↦ if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎))))))
554, 54syl 14 . . 3 (𝜑 → (.g𝐻) = (𝑎 ∈ ℤ, 𝑏 ∈ (Base‘𝐻) ↦ if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎))))))
5648, 55eqtrd 2262 . 2 (𝜑× = (𝑎 ∈ ℤ, 𝑏 ∈ (Base‘𝐻) ↦ if(𝑎 = 0, (0g𝐻), if(0 < 𝑎, (seq1((+g𝐻), (ℕ × {𝑏}))‘𝑎), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑏}))‘-𝑎))))))
5738, 47, 563eqtr4d 2272 1 (𝜑· = × )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  wss 3197  ifcif 3602  {csn 3666   class class class wbr 4082   × cxp 4716  cfv 5317  (class class class)co 6000  cmpo 6002  0cc0 7995  1c1 7996   < clt 8177  -cneg 8314  cn 9106  cz 9442  seqcseq 10664  Basecbs 13027  +gcplusg 13105  0gc0g 13284  invgcminusg 13529  .gcmg 13651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-seqfrec 10665  df-ndx 13030  df-slot 13031  df-base 13033  df-0g 13286  df-minusg 13532  df-mulg 13652
This theorem is referenced by:  mulgass3  14043
  Copyright terms: Public domain W3C validator