ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubfvalg GIF version

Theorem grpsubfvalg 13586
Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 19-Feb-2024.)
Hypotheses
Ref Expression
grpsubval.b 𝐵 = (Base‘𝐺)
grpsubval.p + = (+g𝐺)
grpsubval.i 𝐼 = (invg𝐺)
grpsubval.m = (-g𝐺)
Assertion
Ref Expression
grpsubfvalg (𝐺𝑉 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥,𝐼,𝑦   𝑥, + ,𝑦
Allowed substitution hints:   (𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem grpsubfvalg
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 grpsubval.m . 2 = (-g𝐺)
2 df-sbg 13546 . . 3 -g = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)((invg𝑔)‘𝑦))))
3 fveq2 5629 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
4 grpsubval.b . . . . 5 𝐵 = (Base‘𝐺)
53, 4eqtr4di 2280 . . . 4 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
6 fveq2 5629 . . . . . 6 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
7 grpsubval.p . . . . . 6 + = (+g𝐺)
86, 7eqtr4di 2280 . . . . 5 (𝑔 = 𝐺 → (+g𝑔) = + )
9 eqidd 2230 . . . . 5 (𝑔 = 𝐺𝑥 = 𝑥)
10 fveq2 5629 . . . . . . 7 (𝑔 = 𝐺 → (invg𝑔) = (invg𝐺))
11 grpsubval.i . . . . . . 7 𝐼 = (invg𝐺)
1210, 11eqtr4di 2280 . . . . . 6 (𝑔 = 𝐺 → (invg𝑔) = 𝐼)
1312fveq1d 5631 . . . . 5 (𝑔 = 𝐺 → ((invg𝑔)‘𝑦) = (𝐼𝑦))
148, 9, 13oveq123d 6028 . . . 4 (𝑔 = 𝐺 → (𝑥(+g𝑔)((invg𝑔)‘𝑦)) = (𝑥 + (𝐼𝑦)))
155, 5, 14mpoeq123dv 6072 . . 3 (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)((invg𝑔)‘𝑦))) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
16 elex 2811 . . 3 (𝐺𝑉𝐺 ∈ V)
17 basfn 13099 . . . . . 6 Base Fn V
18 funfvex 5646 . . . . . . 7 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
1918funfni 5423 . . . . . 6 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
2017, 16, 19sylancr 414 . . . . 5 (𝐺𝑉 → (Base‘𝐺) ∈ V)
214, 20eqeltrid 2316 . . . 4 (𝐺𝑉𝐵 ∈ V)
22 mpoexga 6364 . . . 4 ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))) ∈ V)
2321, 21, 22syl2anc 411 . . 3 (𝐺𝑉 → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))) ∈ V)
242, 15, 16, 23fvmptd3 5730 . 2 (𝐺𝑉 → (-g𝐺) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
251, 24eqtrid 2274 1 (𝐺𝑉 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  Vcvv 2799   Fn wfn 5313  cfv 5318  (class class class)co 6007  cmpo 6009  Basecbs 13040  +gcplusg 13118  invgcminusg 13542  -gcsg 13543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8098  ax-resscn 8099  ax-1re 8101  ax-addrcl 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-inn 9119  df-ndx 13043  df-slot 13044  df-base 13046  df-sbg 13546
This theorem is referenced by:  grpsubval  13587  grpsubf  13620  grpsubpropdg  13645  grpsubpropd2  13646
  Copyright terms: Public domain W3C validator