![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grpsubfvalg | GIF version |
Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 19-Feb-2024.) |
Ref | Expression |
---|---|
grpsubval.b | ⊢ 𝐵 = (Base‘𝐺) |
grpsubval.p | ⊢ + = (+g‘𝐺) |
grpsubval.i | ⊢ 𝐼 = (invg‘𝐺) |
grpsubval.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
grpsubfvalg | ⊢ (𝐺 ∈ 𝑉 → − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubval.m | . 2 ⊢ − = (-g‘𝐺) | |
2 | df-sbg 12887 | . . 3 ⊢ -g = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)((invg‘𝑔)‘𝑦)))) | |
3 | fveq2 5517 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
4 | grpsubval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
5 | 3, 4 | eqtr4di 2228 | . . . 4 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
6 | fveq2 5517 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) | |
7 | grpsubval.p | . . . . . 6 ⊢ + = (+g‘𝐺) | |
8 | 6, 7 | eqtr4di 2228 | . . . . 5 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
9 | eqidd 2178 | . . . . 5 ⊢ (𝑔 = 𝐺 → 𝑥 = 𝑥) | |
10 | fveq2 5517 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (invg‘𝑔) = (invg‘𝐺)) | |
11 | grpsubval.i | . . . . . . 7 ⊢ 𝐼 = (invg‘𝐺) | |
12 | 10, 11 | eqtr4di 2228 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (invg‘𝑔) = 𝐼) |
13 | 12 | fveq1d 5519 | . . . . 5 ⊢ (𝑔 = 𝐺 → ((invg‘𝑔)‘𝑦) = (𝐼‘𝑦)) |
14 | 8, 9, 13 | oveq123d 5898 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑥(+g‘𝑔)((invg‘𝑔)‘𝑦)) = (𝑥 + (𝐼‘𝑦))) |
15 | 5, 5, 14 | mpoeq123dv 5939 | . . 3 ⊢ (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)((invg‘𝑔)‘𝑦))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
16 | elex 2750 | . . 3 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
17 | basfn 12522 | . . . . . 6 ⊢ Base Fn V | |
18 | funfvex 5534 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
19 | 18 | funfni 5318 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
20 | 17, 16, 19 | sylancr 414 | . . . . 5 ⊢ (𝐺 ∈ 𝑉 → (Base‘𝐺) ∈ V) |
21 | 4, 20 | eqeltrid 2264 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → 𝐵 ∈ V) |
22 | mpoexga 6215 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) ∈ V) | |
23 | 21, 21, 22 | syl2anc 411 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) ∈ V) |
24 | 2, 15, 16, 23 | fvmptd3 5611 | . 2 ⊢ (𝐺 ∈ 𝑉 → (-g‘𝐺) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
25 | 1, 24 | eqtrid 2222 | 1 ⊢ (𝐺 ∈ 𝑉 → − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 Vcvv 2739 Fn wfn 5213 ‘cfv 5218 (class class class)co 5877 ∈ cmpo 5879 Basecbs 12464 +gcplusg 12538 invgcminusg 12883 -gcsg 12884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-cnex 7904 ax-resscn 7905 ax-1re 7907 ax-addrcl 7910 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-inn 8922 df-ndx 12467 df-slot 12468 df-base 12470 df-sbg 12887 |
This theorem is referenced by: grpsubval 12924 grpsubf 12954 grpsubpropdg 12979 grpsubpropd2 12980 |
Copyright terms: Public domain | W3C validator |