Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > grpsubfvalg | GIF version |
Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 19-Feb-2024.) |
Ref | Expression |
---|---|
grpsubval.b | ⊢ 𝐵 = (Base‘𝐺) |
grpsubval.p | ⊢ + = (+g‘𝐺) |
grpsubval.i | ⊢ 𝐼 = (invg‘𝐺) |
grpsubval.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
grpsubfvalg | ⊢ (𝐺 ∈ 𝑉 → − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubval.m | . 2 ⊢ − = (-g‘𝐺) | |
2 | df-sbg 12713 | . . 3 ⊢ -g = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)((invg‘𝑔)‘𝑦)))) | |
3 | fveq2 5496 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
4 | grpsubval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
5 | 3, 4 | eqtr4di 2221 | . . . 4 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
6 | fveq2 5496 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) | |
7 | grpsubval.p | . . . . . 6 ⊢ + = (+g‘𝐺) | |
8 | 6, 7 | eqtr4di 2221 | . . . . 5 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
9 | eqidd 2171 | . . . . 5 ⊢ (𝑔 = 𝐺 → 𝑥 = 𝑥) | |
10 | fveq2 5496 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (invg‘𝑔) = (invg‘𝐺)) | |
11 | grpsubval.i | . . . . . . 7 ⊢ 𝐼 = (invg‘𝐺) | |
12 | 10, 11 | eqtr4di 2221 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (invg‘𝑔) = 𝐼) |
13 | 12 | fveq1d 5498 | . . . . 5 ⊢ (𝑔 = 𝐺 → ((invg‘𝑔)‘𝑦) = (𝐼‘𝑦)) |
14 | 8, 9, 13 | oveq123d 5874 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑥(+g‘𝑔)((invg‘𝑔)‘𝑦)) = (𝑥 + (𝐼‘𝑦))) |
15 | 5, 5, 14 | mpoeq123dv 5915 | . . 3 ⊢ (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)((invg‘𝑔)‘𝑦))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
16 | elex 2741 | . . 3 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
17 | basfn 12473 | . . . . . 6 ⊢ Base Fn V | |
18 | funfvex 5513 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
19 | 18 | funfni 5298 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
20 | 17, 16, 19 | sylancr 412 | . . . . 5 ⊢ (𝐺 ∈ 𝑉 → (Base‘𝐺) ∈ V) |
21 | 4, 20 | eqeltrid 2257 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → 𝐵 ∈ V) |
22 | mpoexga 6191 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) ∈ V) | |
23 | 21, 21, 22 | syl2anc 409 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) ∈ V) |
24 | 2, 15, 16, 23 | fvmptd3 5589 | . 2 ⊢ (𝐺 ∈ 𝑉 → (-g‘𝐺) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
25 | 1, 24 | eqtrid 2215 | 1 ⊢ (𝐺 ∈ 𝑉 → − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 Vcvv 2730 Fn wfn 5193 ‘cfv 5198 (class class class)co 5853 ∈ cmpo 5855 Basecbs 12416 +gcplusg 12480 invgcminusg 12709 -gcsg 12710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-inn 8879 df-ndx 12419 df-slot 12420 df-base 12422 df-sbg 12713 |
This theorem is referenced by: grpsubval 12749 |
Copyright terms: Public domain | W3C validator |