| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpsubfvalg | GIF version | ||
| Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 19-Feb-2024.) |
| Ref | Expression |
|---|---|
| grpsubval.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubval.p | ⊢ + = (+g‘𝐺) |
| grpsubval.i | ⊢ 𝐼 = (invg‘𝐺) |
| grpsubval.m | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| grpsubfvalg | ⊢ (𝐺 ∈ 𝑉 → − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubval.m | . 2 ⊢ − = (-g‘𝐺) | |
| 2 | df-sbg 13546 | . . 3 ⊢ -g = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)((invg‘𝑔)‘𝑦)))) | |
| 3 | fveq2 5629 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
| 4 | grpsubval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | 3, 4 | eqtr4di 2280 | . . . 4 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
| 6 | fveq2 5629 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) | |
| 7 | grpsubval.p | . . . . . 6 ⊢ + = (+g‘𝐺) | |
| 8 | 6, 7 | eqtr4di 2280 | . . . . 5 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
| 9 | eqidd 2230 | . . . . 5 ⊢ (𝑔 = 𝐺 → 𝑥 = 𝑥) | |
| 10 | fveq2 5629 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (invg‘𝑔) = (invg‘𝐺)) | |
| 11 | grpsubval.i | . . . . . . 7 ⊢ 𝐼 = (invg‘𝐺) | |
| 12 | 10, 11 | eqtr4di 2280 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (invg‘𝑔) = 𝐼) |
| 13 | 12 | fveq1d 5631 | . . . . 5 ⊢ (𝑔 = 𝐺 → ((invg‘𝑔)‘𝑦) = (𝐼‘𝑦)) |
| 14 | 8, 9, 13 | oveq123d 6028 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑥(+g‘𝑔)((invg‘𝑔)‘𝑦)) = (𝑥 + (𝐼‘𝑦))) |
| 15 | 5, 5, 14 | mpoeq123dv 6072 | . . 3 ⊢ (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)((invg‘𝑔)‘𝑦))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
| 16 | elex 2811 | . . 3 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
| 17 | basfn 13099 | . . . . . 6 ⊢ Base Fn V | |
| 18 | funfvex 5646 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
| 19 | 18 | funfni 5423 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
| 20 | 17, 16, 19 | sylancr 414 | . . . . 5 ⊢ (𝐺 ∈ 𝑉 → (Base‘𝐺) ∈ V) |
| 21 | 4, 20 | eqeltrid 2316 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → 𝐵 ∈ V) |
| 22 | mpoexga 6364 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) ∈ V) | |
| 23 | 21, 21, 22 | syl2anc 411 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) ∈ V) |
| 24 | 2, 15, 16, 23 | fvmptd3 5730 | . 2 ⊢ (𝐺 ∈ 𝑉 → (-g‘𝐺) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
| 25 | 1, 24 | eqtrid 2274 | 1 ⊢ (𝐺 ∈ 𝑉 → − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 Fn wfn 5313 ‘cfv 5318 (class class class)co 6007 ∈ cmpo 6009 Basecbs 13040 +gcplusg 13118 invgcminusg 13542 -gcsg 13543 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-inn 9119 df-ndx 13043 df-slot 13044 df-base 13046 df-sbg 13546 |
| This theorem is referenced by: grpsubval 13587 grpsubf 13620 grpsubpropdg 13645 grpsubpropd2 13646 |
| Copyright terms: Public domain | W3C validator |