![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grpsubfvalg | GIF version |
Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 19-Feb-2024.) |
Ref | Expression |
---|---|
grpsubval.b | ⊢ 𝐵 = (Base‘𝐺) |
grpsubval.p | ⊢ + = (+g‘𝐺) |
grpsubval.i | ⊢ 𝐼 = (invg‘𝐺) |
grpsubval.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
grpsubfvalg | ⊢ (𝐺 ∈ 𝑉 → − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubval.m | . 2 ⊢ − = (-g‘𝐺) | |
2 | df-sbg 13080 | . . 3 ⊢ -g = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)((invg‘𝑔)‘𝑦)))) | |
3 | fveq2 5555 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
4 | grpsubval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
5 | 3, 4 | eqtr4di 2244 | . . . 4 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
6 | fveq2 5555 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) | |
7 | grpsubval.p | . . . . . 6 ⊢ + = (+g‘𝐺) | |
8 | 6, 7 | eqtr4di 2244 | . . . . 5 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
9 | eqidd 2194 | . . . . 5 ⊢ (𝑔 = 𝐺 → 𝑥 = 𝑥) | |
10 | fveq2 5555 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (invg‘𝑔) = (invg‘𝐺)) | |
11 | grpsubval.i | . . . . . . 7 ⊢ 𝐼 = (invg‘𝐺) | |
12 | 10, 11 | eqtr4di 2244 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (invg‘𝑔) = 𝐼) |
13 | 12 | fveq1d 5557 | . . . . 5 ⊢ (𝑔 = 𝐺 → ((invg‘𝑔)‘𝑦) = (𝐼‘𝑦)) |
14 | 8, 9, 13 | oveq123d 5940 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑥(+g‘𝑔)((invg‘𝑔)‘𝑦)) = (𝑥 + (𝐼‘𝑦))) |
15 | 5, 5, 14 | mpoeq123dv 5981 | . . 3 ⊢ (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)((invg‘𝑔)‘𝑦))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
16 | elex 2771 | . . 3 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
17 | basfn 12679 | . . . . . 6 ⊢ Base Fn V | |
18 | funfvex 5572 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
19 | 18 | funfni 5355 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
20 | 17, 16, 19 | sylancr 414 | . . . . 5 ⊢ (𝐺 ∈ 𝑉 → (Base‘𝐺) ∈ V) |
21 | 4, 20 | eqeltrid 2280 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → 𝐵 ∈ V) |
22 | mpoexga 6267 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) ∈ V) | |
23 | 21, 21, 22 | syl2anc 411 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦))) ∈ V) |
24 | 2, 15, 16, 23 | fvmptd3 5652 | . 2 ⊢ (𝐺 ∈ 𝑉 → (-g‘𝐺) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
25 | 1, 24 | eqtrid 2238 | 1 ⊢ (𝐺 ∈ 𝑉 → − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 Fn wfn 5250 ‘cfv 5255 (class class class)co 5919 ∈ cmpo 5921 Basecbs 12621 +gcplusg 12698 invgcminusg 13076 -gcsg 13077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-inn 8985 df-ndx 12624 df-slot 12625 df-base 12627 df-sbg 13080 |
This theorem is referenced by: grpsubval 13121 grpsubf 13154 grpsubpropdg 13179 grpsubpropd2 13180 |
Copyright terms: Public domain | W3C validator |