| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpsubpropdg | GIF version | ||
| Description: Weak property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 27-Mar-2015.) |
| Ref | Expression |
|---|---|
| grpsubpropd.b | ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) |
| grpsubpropd.p | ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) |
| grpsubpropdg.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| grpsubpropdg.h | ⊢ (𝜑 → 𝐻 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| grpsubpropdg | ⊢ (𝜑 → (-g‘𝐺) = (-g‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubpropd.b | . . 3 ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) | |
| 2 | grpsubpropd.p | . . . 4 ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) | |
| 3 | eqidd 2230 | . . . 4 ⊢ (𝜑 → 𝑎 = 𝑎) | |
| 4 | eqidd 2230 | . . . . . 6 ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) | |
| 5 | grpsubpropdg.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 6 | grpsubpropdg.h | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ 𝑊) | |
| 7 | 2 | oveqdr 6022 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐻)𝑦)) |
| 8 | 4, 1, 5, 6, 7 | grpinvpropdg 13594 | . . . . 5 ⊢ (𝜑 → (invg‘𝐺) = (invg‘𝐻)) |
| 9 | 8 | fveq1d 5625 | . . . 4 ⊢ (𝜑 → ((invg‘𝐺)‘𝑏) = ((invg‘𝐻)‘𝑏)) |
| 10 | 2, 3, 9 | oveq123d 6015 | . . 3 ⊢ (𝜑 → (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏)) = (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏))) |
| 11 | 1, 1, 10 | mpoeq123dv 6057 | . 2 ⊢ (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) |
| 12 | eqid 2229 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 13 | eqid 2229 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 14 | eqid 2229 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 15 | eqid 2229 | . . . 4 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 16 | 12, 13, 14, 15 | grpsubfvalg 13564 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (-g‘𝐺) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏)))) |
| 17 | 5, 16 | syl 14 | . 2 ⊢ (𝜑 → (-g‘𝐺) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏)))) |
| 18 | eqid 2229 | . . . 4 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 19 | eqid 2229 | . . . 4 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
| 20 | eqid 2229 | . . . 4 ⊢ (invg‘𝐻) = (invg‘𝐻) | |
| 21 | eqid 2229 | . . . 4 ⊢ (-g‘𝐻) = (-g‘𝐻) | |
| 22 | 18, 19, 20, 21 | grpsubfvalg 13564 | . . 3 ⊢ (𝐻 ∈ 𝑊 → (-g‘𝐻) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) |
| 23 | 6, 22 | syl 14 | . 2 ⊢ (𝜑 → (-g‘𝐻) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) |
| 24 | 11, 17, 23 | 3eqtr4d 2272 | 1 ⊢ (𝜑 → (-g‘𝐺) = (-g‘𝐻)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ‘cfv 5314 (class class class)co 5994 ∈ cmpo 5996 Basecbs 13018 +gcplusg 13096 invgcminusg 13520 -gcsg 13521 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-cnex 8078 ax-resscn 8079 ax-1re 8081 ax-addrcl 8084 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-inn 9099 df-ndx 13021 df-slot 13022 df-base 13024 df-0g 13277 df-minusg 13523 df-sbg 13524 |
| This theorem is referenced by: rlmsubg 14407 |
| Copyright terms: Public domain | W3C validator |