| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpsubpropdg | GIF version | ||
| Description: Weak property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 27-Mar-2015.) |
| Ref | Expression |
|---|---|
| grpsubpropd.b | ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) |
| grpsubpropd.p | ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) |
| grpsubpropdg.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| grpsubpropdg.h | ⊢ (𝜑 → 𝐻 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| grpsubpropdg | ⊢ (𝜑 → (-g‘𝐺) = (-g‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubpropd.b | . . 3 ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) | |
| 2 | grpsubpropd.p | . . . 4 ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) | |
| 3 | eqidd 2207 | . . . 4 ⊢ (𝜑 → 𝑎 = 𝑎) | |
| 4 | eqidd 2207 | . . . . . 6 ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) | |
| 5 | grpsubpropdg.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 6 | grpsubpropdg.h | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ 𝑊) | |
| 7 | 2 | oveqdr 5982 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐻)𝑦)) |
| 8 | 4, 1, 5, 6, 7 | grpinvpropdg 13457 | . . . . 5 ⊢ (𝜑 → (invg‘𝐺) = (invg‘𝐻)) |
| 9 | 8 | fveq1d 5588 | . . . 4 ⊢ (𝜑 → ((invg‘𝐺)‘𝑏) = ((invg‘𝐻)‘𝑏)) |
| 10 | 2, 3, 9 | oveq123d 5975 | . . 3 ⊢ (𝜑 → (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏)) = (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏))) |
| 11 | 1, 1, 10 | mpoeq123dv 6017 | . 2 ⊢ (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) |
| 12 | eqid 2206 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 13 | eqid 2206 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 14 | eqid 2206 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 15 | eqid 2206 | . . . 4 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 16 | 12, 13, 14, 15 | grpsubfvalg 13427 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (-g‘𝐺) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏)))) |
| 17 | 5, 16 | syl 14 | . 2 ⊢ (𝜑 → (-g‘𝐺) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏)))) |
| 18 | eqid 2206 | . . . 4 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 19 | eqid 2206 | . . . 4 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
| 20 | eqid 2206 | . . . 4 ⊢ (invg‘𝐻) = (invg‘𝐻) | |
| 21 | eqid 2206 | . . . 4 ⊢ (-g‘𝐻) = (-g‘𝐻) | |
| 22 | 18, 19, 20, 21 | grpsubfvalg 13427 | . . 3 ⊢ (𝐻 ∈ 𝑊 → (-g‘𝐻) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) |
| 23 | 6, 22 | syl 14 | . 2 ⊢ (𝜑 → (-g‘𝐻) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) |
| 24 | 11, 17, 23 | 3eqtr4d 2249 | 1 ⊢ (𝜑 → (-g‘𝐺) = (-g‘𝐻)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ‘cfv 5277 (class class class)co 5954 ∈ cmpo 5956 Basecbs 12882 +gcplusg 12959 invgcminusg 13383 -gcsg 13384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-cnex 8029 ax-resscn 8030 ax-1re 8032 ax-addrcl 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-inn 9050 df-ndx 12885 df-slot 12886 df-base 12888 df-0g 13140 df-minusg 13386 df-sbg 13387 |
| This theorem is referenced by: rlmsubg 14270 |
| Copyright terms: Public domain | W3C validator |