ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubpropdg GIF version

Theorem grpsubpropdg 13306
Description: Weak property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 27-Mar-2015.)
Hypotheses
Ref Expression
grpsubpropd.b (𝜑 → (Base‘𝐺) = (Base‘𝐻))
grpsubpropd.p (𝜑 → (+g𝐺) = (+g𝐻))
grpsubpropdg.g (𝜑𝐺𝑉)
grpsubpropdg.h (𝜑𝐻𝑊)
Assertion
Ref Expression
grpsubpropdg (𝜑 → (-g𝐺) = (-g𝐻))

Proof of Theorem grpsubpropdg
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpsubpropd.b . . 3 (𝜑 → (Base‘𝐺) = (Base‘𝐻))
2 grpsubpropd.p . . . 4 (𝜑 → (+g𝐺) = (+g𝐻))
3 eqidd 2197 . . . 4 (𝜑𝑎 = 𝑎)
4 eqidd 2197 . . . . . 6 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
5 grpsubpropdg.g . . . . . 6 (𝜑𝐺𝑉)
6 grpsubpropdg.h . . . . . 6 (𝜑𝐻𝑊)
72oveqdr 5953 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
84, 1, 5, 6, 7grpinvpropdg 13277 . . . . 5 (𝜑 → (invg𝐺) = (invg𝐻))
98fveq1d 5563 . . . 4 (𝜑 → ((invg𝐺)‘𝑏) = ((invg𝐻)‘𝑏))
102, 3, 9oveq123d 5946 . . 3 (𝜑 → (𝑎(+g𝐺)((invg𝐺)‘𝑏)) = (𝑎(+g𝐻)((invg𝐻)‘𝑏)))
111, 1, 10mpoeq123dv 5988 . 2 (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
12 eqid 2196 . . . 4 (Base‘𝐺) = (Base‘𝐺)
13 eqid 2196 . . . 4 (+g𝐺) = (+g𝐺)
14 eqid 2196 . . . 4 (invg𝐺) = (invg𝐺)
15 eqid 2196 . . . 4 (-g𝐺) = (-g𝐺)
1612, 13, 14, 15grpsubfvalg 13247 . . 3 (𝐺𝑉 → (-g𝐺) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏))))
175, 16syl 14 . 2 (𝜑 → (-g𝐺) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏))))
18 eqid 2196 . . . 4 (Base‘𝐻) = (Base‘𝐻)
19 eqid 2196 . . . 4 (+g𝐻) = (+g𝐻)
20 eqid 2196 . . . 4 (invg𝐻) = (invg𝐻)
21 eqid 2196 . . . 4 (-g𝐻) = (-g𝐻)
2218, 19, 20, 21grpsubfvalg 13247 . . 3 (𝐻𝑊 → (-g𝐻) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
236, 22syl 14 . 2 (𝜑 → (-g𝐻) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
2411, 17, 233eqtr4d 2239 1 (𝜑 → (-g𝐺) = (-g𝐻))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  cfv 5259  (class class class)co 5925  cmpo 5927  Basecbs 12703  +gcplusg 12780  invgcminusg 13203  -gcsg 13204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-inn 9008  df-ndx 12706  df-slot 12707  df-base 12709  df-0g 12960  df-minusg 13206  df-sbg 13207
This theorem is referenced by:  rlmsubg  14090
  Copyright terms: Public domain W3C validator