![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grpsubpropdg | GIF version |
Description: Weak property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 27-Mar-2015.) |
Ref | Expression |
---|---|
grpsubpropd.b | ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) |
grpsubpropd.p | ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) |
grpsubpropdg.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
grpsubpropdg.h | ⊢ (𝜑 → 𝐻 ∈ 𝑊) |
Ref | Expression |
---|---|
grpsubpropdg | ⊢ (𝜑 → (-g‘𝐺) = (-g‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubpropd.b | . . 3 ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) | |
2 | grpsubpropd.p | . . . 4 ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) | |
3 | eqidd 2194 | . . . 4 ⊢ (𝜑 → 𝑎 = 𝑎) | |
4 | eqidd 2194 | . . . . . 6 ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) | |
5 | grpsubpropdg.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
6 | grpsubpropdg.h | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ 𝑊) | |
7 | 2 | oveqdr 5947 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐻)𝑦)) |
8 | 4, 1, 5, 6, 7 | grpinvpropdg 13150 | . . . . 5 ⊢ (𝜑 → (invg‘𝐺) = (invg‘𝐻)) |
9 | 8 | fveq1d 5557 | . . . 4 ⊢ (𝜑 → ((invg‘𝐺)‘𝑏) = ((invg‘𝐻)‘𝑏)) |
10 | 2, 3, 9 | oveq123d 5940 | . . 3 ⊢ (𝜑 → (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏)) = (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏))) |
11 | 1, 1, 10 | mpoeq123dv 5981 | . 2 ⊢ (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) |
12 | eqid 2193 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
13 | eqid 2193 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
14 | eqid 2193 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
15 | eqid 2193 | . . . 4 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
16 | 12, 13, 14, 15 | grpsubfvalg 13120 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (-g‘𝐺) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏)))) |
17 | 5, 16 | syl 14 | . 2 ⊢ (𝜑 → (-g‘𝐺) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏)))) |
18 | eqid 2193 | . . . 4 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
19 | eqid 2193 | . . . 4 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
20 | eqid 2193 | . . . 4 ⊢ (invg‘𝐻) = (invg‘𝐻) | |
21 | eqid 2193 | . . . 4 ⊢ (-g‘𝐻) = (-g‘𝐻) | |
22 | 18, 19, 20, 21 | grpsubfvalg 13120 | . . 3 ⊢ (𝐻 ∈ 𝑊 → (-g‘𝐻) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) |
23 | 6, 22 | syl 14 | . 2 ⊢ (𝜑 → (-g‘𝐻) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) |
24 | 11, 17, 23 | 3eqtr4d 2236 | 1 ⊢ (𝜑 → (-g‘𝐺) = (-g‘𝐻)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ‘cfv 5255 (class class class)co 5919 ∈ cmpo 5921 Basecbs 12621 +gcplusg 12698 invgcminusg 13076 -gcsg 13077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-inn 8985 df-ndx 12624 df-slot 12625 df-base 12627 df-0g 12872 df-minusg 13079 df-sbg 13080 |
This theorem is referenced by: rlmsubg 13957 |
Copyright terms: Public domain | W3C validator |