ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubpropdg GIF version

Theorem grpsubpropdg 13179
Description: Weak property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 27-Mar-2015.)
Hypotheses
Ref Expression
grpsubpropd.b (𝜑 → (Base‘𝐺) = (Base‘𝐻))
grpsubpropd.p (𝜑 → (+g𝐺) = (+g𝐻))
grpsubpropdg.g (𝜑𝐺𝑉)
grpsubpropdg.h (𝜑𝐻𝑊)
Assertion
Ref Expression
grpsubpropdg (𝜑 → (-g𝐺) = (-g𝐻))

Proof of Theorem grpsubpropdg
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpsubpropd.b . . 3 (𝜑 → (Base‘𝐺) = (Base‘𝐻))
2 grpsubpropd.p . . . 4 (𝜑 → (+g𝐺) = (+g𝐻))
3 eqidd 2194 . . . 4 (𝜑𝑎 = 𝑎)
4 eqidd 2194 . . . . . 6 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
5 grpsubpropdg.g . . . . . 6 (𝜑𝐺𝑉)
6 grpsubpropdg.h . . . . . 6 (𝜑𝐻𝑊)
72oveqdr 5947 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
84, 1, 5, 6, 7grpinvpropdg 13150 . . . . 5 (𝜑 → (invg𝐺) = (invg𝐻))
98fveq1d 5557 . . . 4 (𝜑 → ((invg𝐺)‘𝑏) = ((invg𝐻)‘𝑏))
102, 3, 9oveq123d 5940 . . 3 (𝜑 → (𝑎(+g𝐺)((invg𝐺)‘𝑏)) = (𝑎(+g𝐻)((invg𝐻)‘𝑏)))
111, 1, 10mpoeq123dv 5981 . 2 (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
12 eqid 2193 . . . 4 (Base‘𝐺) = (Base‘𝐺)
13 eqid 2193 . . . 4 (+g𝐺) = (+g𝐺)
14 eqid 2193 . . . 4 (invg𝐺) = (invg𝐺)
15 eqid 2193 . . . 4 (-g𝐺) = (-g𝐺)
1612, 13, 14, 15grpsubfvalg 13120 . . 3 (𝐺𝑉 → (-g𝐺) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏))))
175, 16syl 14 . 2 (𝜑 → (-g𝐺) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏))))
18 eqid 2193 . . . 4 (Base‘𝐻) = (Base‘𝐻)
19 eqid 2193 . . . 4 (+g𝐻) = (+g𝐻)
20 eqid 2193 . . . 4 (invg𝐻) = (invg𝐻)
21 eqid 2193 . . . 4 (-g𝐻) = (-g𝐻)
2218, 19, 20, 21grpsubfvalg 13120 . . 3 (𝐻𝑊 → (-g𝐻) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
236, 22syl 14 . 2 (𝜑 → (-g𝐻) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
2411, 17, 233eqtr4d 2236 1 (𝜑 → (-g𝐺) = (-g𝐻))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  cfv 5255  (class class class)co 5919  cmpo 5921  Basecbs 12621  +gcplusg 12698  invgcminusg 13076  -gcsg 13077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-inn 8985  df-ndx 12624  df-slot 12625  df-base 12627  df-0g 12872  df-minusg 13079  df-sbg 13080
This theorem is referenced by:  rlmsubg  13957
  Copyright terms: Public domain W3C validator