ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubpropdg GIF version

Theorem grpsubpropdg 12833
Description: Weak property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 27-Mar-2015.)
Hypotheses
Ref Expression
grpsubpropd.b (𝜑 → (Base‘𝐺) = (Base‘𝐻))
grpsubpropd.p (𝜑 → (+g𝐺) = (+g𝐻))
grpsubpropdg.g (𝜑𝐺𝑉)
grpsubpropdg.h (𝜑𝐻𝑊)
Assertion
Ref Expression
grpsubpropdg (𝜑 → (-g𝐺) = (-g𝐻))

Proof of Theorem grpsubpropdg
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpsubpropd.b . . 3 (𝜑 → (Base‘𝐺) = (Base‘𝐻))
2 grpsubpropd.p . . . 4 (𝜑 → (+g𝐺) = (+g𝐻))
3 eqidd 2176 . . . 4 (𝜑𝑎 = 𝑎)
4 eqidd 2176 . . . . . 6 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
5 grpsubpropdg.g . . . . . 6 (𝜑𝐺𝑉)
6 grpsubpropdg.h . . . . . 6 (𝜑𝐻𝑊)
72oveqdr 5893 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
84, 1, 5, 6, 7grpinvpropdg 12804 . . . . 5 (𝜑 → (invg𝐺) = (invg𝐻))
98fveq1d 5509 . . . 4 (𝜑 → ((invg𝐺)‘𝑏) = ((invg𝐻)‘𝑏))
102, 3, 9oveq123d 5886 . . 3 (𝜑 → (𝑎(+g𝐺)((invg𝐺)‘𝑏)) = (𝑎(+g𝐻)((invg𝐻)‘𝑏)))
111, 1, 10mpoeq123dv 5927 . 2 (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
12 eqid 2175 . . . 4 (Base‘𝐺) = (Base‘𝐺)
13 eqid 2175 . . . 4 (+g𝐺) = (+g𝐺)
14 eqid 2175 . . . 4 (invg𝐺) = (invg𝐺)
15 eqid 2175 . . . 4 (-g𝐺) = (-g𝐺)
1612, 13, 14, 15grpsubfvalg 12778 . . 3 (𝐺𝑉 → (-g𝐺) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏))))
175, 16syl 14 . 2 (𝜑 → (-g𝐺) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏))))
18 eqid 2175 . . . 4 (Base‘𝐻) = (Base‘𝐻)
19 eqid 2175 . . . 4 (+g𝐻) = (+g𝐻)
20 eqid 2175 . . . 4 (invg𝐻) = (invg𝐻)
21 eqid 2175 . . . 4 (-g𝐻) = (-g𝐻)
2218, 19, 20, 21grpsubfvalg 12778 . . 3 (𝐻𝑊 → (-g𝐻) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
236, 22syl 14 . 2 (𝜑 → (-g𝐻) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
2411, 17, 233eqtr4d 2218 1 (𝜑 → (-g𝐺) = (-g𝐻))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2146  cfv 5208  (class class class)co 5865  cmpo 5867  Basecbs 12428  +gcplusg 12492  invgcminusg 12739  -gcsg 12740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-inn 8891  df-ndx 12431  df-slot 12432  df-base 12434  df-0g 12628  df-minusg 12742  df-sbg 12743
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator