Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > grpsubpropdg | GIF version |
Description: Weak property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 27-Mar-2015.) |
Ref | Expression |
---|---|
grpsubpropd.b | ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) |
grpsubpropd.p | ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) |
grpsubpropdg.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
grpsubpropdg.h | ⊢ (𝜑 → 𝐻 ∈ 𝑊) |
Ref | Expression |
---|---|
grpsubpropdg | ⊢ (𝜑 → (-g‘𝐺) = (-g‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubpropd.b | . . 3 ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) | |
2 | grpsubpropd.p | . . . 4 ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) | |
3 | eqidd 2176 | . . . 4 ⊢ (𝜑 → 𝑎 = 𝑎) | |
4 | eqidd 2176 | . . . . . 6 ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) | |
5 | grpsubpropdg.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
6 | grpsubpropdg.h | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ 𝑊) | |
7 | 2 | oveqdr 5893 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐻)𝑦)) |
8 | 4, 1, 5, 6, 7 | grpinvpropdg 12804 | . . . . 5 ⊢ (𝜑 → (invg‘𝐺) = (invg‘𝐻)) |
9 | 8 | fveq1d 5509 | . . . 4 ⊢ (𝜑 → ((invg‘𝐺)‘𝑏) = ((invg‘𝐻)‘𝑏)) |
10 | 2, 3, 9 | oveq123d 5886 | . . 3 ⊢ (𝜑 → (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏)) = (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏))) |
11 | 1, 1, 10 | mpoeq123dv 5927 | . 2 ⊢ (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) |
12 | eqid 2175 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
13 | eqid 2175 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
14 | eqid 2175 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
15 | eqid 2175 | . . . 4 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
16 | 12, 13, 14, 15 | grpsubfvalg 12778 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (-g‘𝐺) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏)))) |
17 | 5, 16 | syl 14 | . 2 ⊢ (𝜑 → (-g‘𝐺) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g‘𝐺)((invg‘𝐺)‘𝑏)))) |
18 | eqid 2175 | . . . 4 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
19 | eqid 2175 | . . . 4 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
20 | eqid 2175 | . . . 4 ⊢ (invg‘𝐻) = (invg‘𝐻) | |
21 | eqid 2175 | . . . 4 ⊢ (-g‘𝐻) = (-g‘𝐻) | |
22 | 18, 19, 20, 21 | grpsubfvalg 12778 | . . 3 ⊢ (𝐻 ∈ 𝑊 → (-g‘𝐻) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) |
23 | 6, 22 | syl 14 | . 2 ⊢ (𝜑 → (-g‘𝐻) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g‘𝐻)((invg‘𝐻)‘𝑏)))) |
24 | 11, 17, 23 | 3eqtr4d 2218 | 1 ⊢ (𝜑 → (-g‘𝐺) = (-g‘𝐻)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2146 ‘cfv 5208 (class class class)co 5865 ∈ cmpo 5867 Basecbs 12428 +gcplusg 12492 invgcminusg 12739 -gcsg 12740 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-inn 8891 df-ndx 12431 df-slot 12432 df-base 12434 df-0g 12628 df-minusg 12742 df-sbg 12743 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |