ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubpropdg GIF version

Theorem grpsubpropdg 13486
Description: Weak property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 27-Mar-2015.)
Hypotheses
Ref Expression
grpsubpropd.b (𝜑 → (Base‘𝐺) = (Base‘𝐻))
grpsubpropd.p (𝜑 → (+g𝐺) = (+g𝐻))
grpsubpropdg.g (𝜑𝐺𝑉)
grpsubpropdg.h (𝜑𝐻𝑊)
Assertion
Ref Expression
grpsubpropdg (𝜑 → (-g𝐺) = (-g𝐻))

Proof of Theorem grpsubpropdg
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpsubpropd.b . . 3 (𝜑 → (Base‘𝐺) = (Base‘𝐻))
2 grpsubpropd.p . . . 4 (𝜑 → (+g𝐺) = (+g𝐻))
3 eqidd 2207 . . . 4 (𝜑𝑎 = 𝑎)
4 eqidd 2207 . . . . . 6 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
5 grpsubpropdg.g . . . . . 6 (𝜑𝐺𝑉)
6 grpsubpropdg.h . . . . . 6 (𝜑𝐻𝑊)
72oveqdr 5982 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
84, 1, 5, 6, 7grpinvpropdg 13457 . . . . 5 (𝜑 → (invg𝐺) = (invg𝐻))
98fveq1d 5588 . . . 4 (𝜑 → ((invg𝐺)‘𝑏) = ((invg𝐻)‘𝑏))
102, 3, 9oveq123d 5975 . . 3 (𝜑 → (𝑎(+g𝐺)((invg𝐺)‘𝑏)) = (𝑎(+g𝐻)((invg𝐻)‘𝑏)))
111, 1, 10mpoeq123dv 6017 . 2 (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
12 eqid 2206 . . . 4 (Base‘𝐺) = (Base‘𝐺)
13 eqid 2206 . . . 4 (+g𝐺) = (+g𝐺)
14 eqid 2206 . . . 4 (invg𝐺) = (invg𝐺)
15 eqid 2206 . . . 4 (-g𝐺) = (-g𝐺)
1612, 13, 14, 15grpsubfvalg 13427 . . 3 (𝐺𝑉 → (-g𝐺) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏))))
175, 16syl 14 . 2 (𝜑 → (-g𝐺) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏))))
18 eqid 2206 . . . 4 (Base‘𝐻) = (Base‘𝐻)
19 eqid 2206 . . . 4 (+g𝐻) = (+g𝐻)
20 eqid 2206 . . . 4 (invg𝐻) = (invg𝐻)
21 eqid 2206 . . . 4 (-g𝐻) = (-g𝐻)
2218, 19, 20, 21grpsubfvalg 13427 . . 3 (𝐻𝑊 → (-g𝐻) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
236, 22syl 14 . 2 (𝜑 → (-g𝐻) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
2411, 17, 233eqtr4d 2249 1 (𝜑 → (-g𝐺) = (-g𝐻))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  cfv 5277  (class class class)co 5954  cmpo 5956  Basecbs 12882  +gcplusg 12959  invgcminusg 13383  -gcsg 13384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-cnex 8029  ax-resscn 8030  ax-1re 8032  ax-addrcl 8035
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-inn 9050  df-ndx 12885  df-slot 12886  df-base 12888  df-0g 13140  df-minusg 13386  df-sbg 13387
This theorem is referenced by:  rlmsubg  14270
  Copyright terms: Public domain W3C validator