ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plusffvalg GIF version

Theorem plusffvalg 12841
Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
plusffval.1 𝐵 = (Base‘𝐺)
plusffval.2 + = (+g𝐺)
plusffval.3 = (+𝑓𝐺)
Assertion
Ref Expression
plusffvalg (𝐺𝑉 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥, + ,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   (𝑥,𝑦)

Proof of Theorem plusffvalg
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 plusffval.3 . 2 = (+𝑓𝐺)
2 df-plusf 12834 . . 3 +𝑓 = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)𝑦)))
3 fveq2 5534 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
4 plusffval.1 . . . . 5 𝐵 = (Base‘𝐺)
53, 4eqtr4di 2240 . . . 4 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
6 fveq2 5534 . . . . . 6 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
7 plusffval.2 . . . . . 6 + = (+g𝐺)
86, 7eqtr4di 2240 . . . . 5 (𝑔 = 𝐺 → (+g𝑔) = + )
98oveqd 5914 . . . 4 (𝑔 = 𝐺 → (𝑥(+g𝑔)𝑦) = (𝑥 + 𝑦))
105, 5, 9mpoeq123dv 5959 . . 3 (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
11 elex 2763 . . 3 (𝐺𝑉𝐺 ∈ V)
12 basfn 12573 . . . . . 6 Base Fn V
13 funfvex 5551 . . . . . . 7 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
1413funfni 5335 . . . . . 6 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
1512, 11, 14sylancr 414 . . . . 5 (𝐺𝑉 → (Base‘𝐺) ∈ V)
164, 15eqeltrid 2276 . . . 4 (𝐺𝑉𝐵 ∈ V)
17 mpoexga 6238 . . . 4 ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)) ∈ V)
1816, 16, 17syl2anc 411 . . 3 (𝐺𝑉 → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)) ∈ V)
192, 10, 11, 18fvmptd3 5630 . 2 (𝐺𝑉 → (+𝑓𝐺) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
201, 19eqtrid 2234 1 (𝐺𝑉 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2160  Vcvv 2752   Fn wfn 5230  cfv 5235  (class class class)co 5897  cmpo 5899  Basecbs 12515  +gcplusg 12592  +𝑓cplusf 12832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-cnex 7933  ax-resscn 7934  ax-1re 7936  ax-addrcl 7939
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-inn 8951  df-ndx 12518  df-slot 12519  df-base 12521  df-plusf 12834
This theorem is referenced by:  plusfvalg  12842  plusfeqg  12843  plusffng  12844  mgmplusf  12845
  Copyright terms: Public domain W3C validator