| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > plusffvalg | GIF version | ||
| Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 2-Mar-2024.) |
| Ref | Expression |
|---|---|
| plusffval.1 | ⊢ 𝐵 = (Base‘𝐺) |
| plusffval.2 | ⊢ + = (+g‘𝐺) |
| plusffval.3 | ⊢ ⨣ = (+𝑓‘𝐺) |
| Ref | Expression |
|---|---|
| plusffvalg | ⊢ (𝐺 ∈ 𝑉 → ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plusffval.3 | . 2 ⊢ ⨣ = (+𝑓‘𝐺) | |
| 2 | df-plusf 13237 | . . 3 ⊢ +𝑓 = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)𝑦))) | |
| 3 | fveq2 5586 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
| 4 | plusffval.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | 3, 4 | eqtr4di 2257 | . . . 4 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
| 6 | fveq2 5586 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) | |
| 7 | plusffval.2 | . . . . . 6 ⊢ + = (+g‘𝐺) | |
| 8 | 6, 7 | eqtr4di 2257 | . . . . 5 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
| 9 | 8 | oveqd 5971 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑥(+g‘𝑔)𝑦) = (𝑥 + 𝑦)) |
| 10 | 5, 5, 9 | mpoeq123dv 6017 | . . 3 ⊢ (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
| 11 | elex 2785 | . . 3 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
| 12 | basfn 12940 | . . . . . 6 ⊢ Base Fn V | |
| 13 | funfvex 5603 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
| 14 | 13 | funfni 5382 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
| 15 | 12, 11, 14 | sylancr 414 | . . . . 5 ⊢ (𝐺 ∈ 𝑉 → (Base‘𝐺) ∈ V) |
| 16 | 4, 15 | eqeltrid 2293 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → 𝐵 ∈ V) |
| 17 | mpoexga 6308 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) ∈ V) | |
| 18 | 16, 16, 17 | syl2anc 411 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) ∈ V) |
| 19 | 2, 10, 11, 18 | fvmptd3 5683 | . 2 ⊢ (𝐺 ∈ 𝑉 → (+𝑓‘𝐺) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
| 20 | 1, 19 | eqtrid 2251 | 1 ⊢ (𝐺 ∈ 𝑉 → ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 Fn wfn 5272 ‘cfv 5277 (class class class)co 5954 ∈ cmpo 5956 Basecbs 12882 +gcplusg 12959 +𝑓cplusf 13235 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-cnex 8029 ax-resscn 8030 ax-1re 8032 ax-addrcl 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-inn 9050 df-ndx 12885 df-slot 12886 df-base 12888 df-plusf 13237 |
| This theorem is referenced by: plusfvalg 13245 plusfeqg 13246 plusffng 13247 mgmplusf 13248 |
| Copyright terms: Public domain | W3C validator |