ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plusffvalg GIF version

Theorem plusffvalg 12656
Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
plusffval.1 𝐵 = (Base‘𝐺)
plusffval.2 + = (+g𝐺)
plusffval.3 = (+𝑓𝐺)
Assertion
Ref Expression
plusffvalg (𝐺𝑉 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥, + ,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   (𝑥,𝑦)

Proof of Theorem plusffvalg
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 plusffval.3 . 2 = (+𝑓𝐺)
2 df-plusf 12649 . . 3 +𝑓 = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)𝑦)))
3 fveq2 5507 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
4 plusffval.1 . . . . 5 𝐵 = (Base‘𝐺)
53, 4eqtr4di 2226 . . . 4 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
6 fveq2 5507 . . . . . 6 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
7 plusffval.2 . . . . . 6 + = (+g𝐺)
86, 7eqtr4di 2226 . . . . 5 (𝑔 = 𝐺 → (+g𝑔) = + )
98oveqd 5882 . . . 4 (𝑔 = 𝐺 → (𝑥(+g𝑔)𝑦) = (𝑥 + 𝑦))
105, 5, 9mpoeq123dv 5927 . . 3 (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
11 elex 2746 . . 3 (𝐺𝑉𝐺 ∈ V)
12 basfn 12486 . . . . . 6 Base Fn V
13 funfvex 5524 . . . . . . 7 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
1413funfni 5308 . . . . . 6 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
1512, 11, 14sylancr 414 . . . . 5 (𝐺𝑉 → (Base‘𝐺) ∈ V)
164, 15eqeltrid 2262 . . . 4 (𝐺𝑉𝐵 ∈ V)
17 mpoexga 6203 . . . 4 ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)) ∈ V)
1816, 16, 17syl2anc 411 . . 3 (𝐺𝑉 → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)) ∈ V)
192, 10, 11, 18fvmptd3 5601 . 2 (𝐺𝑉 → (+𝑓𝐺) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
201, 19eqtrid 2220 1 (𝐺𝑉 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2146  Vcvv 2735   Fn wfn 5203  cfv 5208  (class class class)co 5865  cmpo 5867  Basecbs 12429  +gcplusg 12502  +𝑓cplusf 12647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-inn 8893  df-ndx 12432  df-slot 12433  df-base 12435  df-plusf 12649
This theorem is referenced by:  plusfvalg  12657  plusfeqg  12658  plusffng  12659  mgmplusf  12660
  Copyright terms: Public domain W3C validator