ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plusffvalg GIF version

Theorem plusffvalg 12786
Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
plusffval.1 𝐵 = (Base‘𝐺)
plusffval.2 + = (+g𝐺)
plusffval.3 = (+𝑓𝐺)
Assertion
Ref Expression
plusffvalg (𝐺𝑉 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥, + ,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   (𝑥,𝑦)

Proof of Theorem plusffvalg
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 plusffval.3 . 2 = (+𝑓𝐺)
2 df-plusf 12779 . . 3 +𝑓 = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)𝑦)))
3 fveq2 5517 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
4 plusffval.1 . . . . 5 𝐵 = (Base‘𝐺)
53, 4eqtr4di 2228 . . . 4 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
6 fveq2 5517 . . . . . 6 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
7 plusffval.2 . . . . . 6 + = (+g𝐺)
86, 7eqtr4di 2228 . . . . 5 (𝑔 = 𝐺 → (+g𝑔) = + )
98oveqd 5894 . . . 4 (𝑔 = 𝐺 → (𝑥(+g𝑔)𝑦) = (𝑥 + 𝑦))
105, 5, 9mpoeq123dv 5939 . . 3 (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
11 elex 2750 . . 3 (𝐺𝑉𝐺 ∈ V)
12 basfn 12522 . . . . . 6 Base Fn V
13 funfvex 5534 . . . . . . 7 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
1413funfni 5318 . . . . . 6 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
1512, 11, 14sylancr 414 . . . . 5 (𝐺𝑉 → (Base‘𝐺) ∈ V)
164, 15eqeltrid 2264 . . . 4 (𝐺𝑉𝐵 ∈ V)
17 mpoexga 6215 . . . 4 ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)) ∈ V)
1816, 16, 17syl2anc 411 . . 3 (𝐺𝑉 → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)) ∈ V)
192, 10, 11, 18fvmptd3 5611 . 2 (𝐺𝑉 → (+𝑓𝐺) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
201, 19eqtrid 2222 1 (𝐺𝑉 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  Vcvv 2739   Fn wfn 5213  cfv 5218  (class class class)co 5877  cmpo 5879  Basecbs 12464  +gcplusg 12538  +𝑓cplusf 12777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-inn 8922  df-ndx 12467  df-slot 12468  df-base 12470  df-plusf 12779
This theorem is referenced by:  plusfvalg  12787  plusfeqg  12788  plusffng  12789  mgmplusf  12790
  Copyright terms: Public domain W3C validator