![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > plusffvalg | GIF version |
Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 2-Mar-2024.) |
Ref | Expression |
---|---|
plusffval.1 | ⊢ 𝐵 = (Base‘𝐺) |
plusffval.2 | ⊢ + = (+g‘𝐺) |
plusffval.3 | ⊢ ⨣ = (+𝑓‘𝐺) |
Ref | Expression |
---|---|
plusffvalg | ⊢ (𝐺 ∈ 𝑉 → ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plusffval.3 | . 2 ⊢ ⨣ = (+𝑓‘𝐺) | |
2 | df-plusf 12834 | . . 3 ⊢ +𝑓 = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)𝑦))) | |
3 | fveq2 5534 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
4 | plusffval.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
5 | 3, 4 | eqtr4di 2240 | . . . 4 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
6 | fveq2 5534 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) | |
7 | plusffval.2 | . . . . . 6 ⊢ + = (+g‘𝐺) | |
8 | 6, 7 | eqtr4di 2240 | . . . . 5 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
9 | 8 | oveqd 5914 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑥(+g‘𝑔)𝑦) = (𝑥 + 𝑦)) |
10 | 5, 5, 9 | mpoeq123dv 5959 | . . 3 ⊢ (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
11 | elex 2763 | . . 3 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
12 | basfn 12573 | . . . . . 6 ⊢ Base Fn V | |
13 | funfvex 5551 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
14 | 13 | funfni 5335 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
15 | 12, 11, 14 | sylancr 414 | . . . . 5 ⊢ (𝐺 ∈ 𝑉 → (Base‘𝐺) ∈ V) |
16 | 4, 15 | eqeltrid 2276 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → 𝐵 ∈ V) |
17 | mpoexga 6238 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) ∈ V) | |
18 | 16, 16, 17 | syl2anc 411 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) ∈ V) |
19 | 2, 10, 11, 18 | fvmptd3 5630 | . 2 ⊢ (𝐺 ∈ 𝑉 → (+𝑓‘𝐺) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
20 | 1, 19 | eqtrid 2234 | 1 ⊢ (𝐺 ∈ 𝑉 → ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 Vcvv 2752 Fn wfn 5230 ‘cfv 5235 (class class class)co 5897 ∈ cmpo 5899 Basecbs 12515 +gcplusg 12592 +𝑓cplusf 12832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-cnex 7933 ax-resscn 7934 ax-1re 7936 ax-addrcl 7939 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-ov 5900 df-oprab 5901 df-mpo 5902 df-1st 6166 df-2nd 6167 df-inn 8951 df-ndx 12518 df-slot 12519 df-base 12521 df-plusf 12834 |
This theorem is referenced by: plusfvalg 12842 plusfeqg 12843 plusffng 12844 mgmplusf 12845 |
Copyright terms: Public domain | W3C validator |