Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > plusffvalg | GIF version |
Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 2-Mar-2024.) |
Ref | Expression |
---|---|
plusffval.1 | ⊢ 𝐵 = (Base‘𝐺) |
plusffval.2 | ⊢ + = (+g‘𝐺) |
plusffval.3 | ⊢ ⨣ = (+𝑓‘𝐺) |
Ref | Expression |
---|---|
plusffvalg | ⊢ (𝐺 ∈ 𝑉 → ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plusffval.3 | . 2 ⊢ ⨣ = (+𝑓‘𝐺) | |
2 | df-plusf 12649 | . . 3 ⊢ +𝑓 = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)𝑦))) | |
3 | fveq2 5507 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
4 | plusffval.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
5 | 3, 4 | eqtr4di 2226 | . . . 4 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
6 | fveq2 5507 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) | |
7 | plusffval.2 | . . . . . 6 ⊢ + = (+g‘𝐺) | |
8 | 6, 7 | eqtr4di 2226 | . . . . 5 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
9 | 8 | oveqd 5882 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑥(+g‘𝑔)𝑦) = (𝑥 + 𝑦)) |
10 | 5, 5, 9 | mpoeq123dv 5927 | . . 3 ⊢ (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
11 | elex 2746 | . . 3 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
12 | basfn 12486 | . . . . . 6 ⊢ Base Fn V | |
13 | funfvex 5524 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
14 | 13 | funfni 5308 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
15 | 12, 11, 14 | sylancr 414 | . . . . 5 ⊢ (𝐺 ∈ 𝑉 → (Base‘𝐺) ∈ V) |
16 | 4, 15 | eqeltrid 2262 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → 𝐵 ∈ V) |
17 | mpoexga 6203 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) ∈ V) | |
18 | 16, 16, 17 | syl2anc 411 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) ∈ V) |
19 | 2, 10, 11, 18 | fvmptd3 5601 | . 2 ⊢ (𝐺 ∈ 𝑉 → (+𝑓‘𝐺) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
20 | 1, 19 | eqtrid 2220 | 1 ⊢ (𝐺 ∈ 𝑉 → ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2146 Vcvv 2735 Fn wfn 5203 ‘cfv 5208 (class class class)co 5865 ∈ cmpo 5867 Basecbs 12429 +gcplusg 12502 +𝑓cplusf 12647 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-inn 8893 df-ndx 12432 df-slot 12433 df-base 12435 df-plusf 12649 |
This theorem is referenced by: plusfvalg 12657 plusfeqg 12658 plusffng 12659 mgmplusf 12660 |
Copyright terms: Public domain | W3C validator |