![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvrfvald | GIF version |
Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof shortened by AV, 2-Mar-2024.) |
Ref | Expression |
---|---|
dvrfvald.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
dvrfvald.t | ⊢ (𝜑 → · = (.r‘𝑅)) |
dvrfvald.u | ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) |
dvrfvald.i | ⊢ (𝜑 → 𝐼 = (invr‘𝑅)) |
dvrfvald.d | ⊢ (𝜑 → / = (/r‘𝑅)) |
dvrfvald.r | ⊢ (𝜑 → 𝑅 ∈ SRing) |
Ref | Expression |
---|---|
dvrfvald | ⊢ (𝜑 → / = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dvr 13628 | . . 3 ⊢ /r = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r‘𝑟)((invr‘𝑟)‘𝑦)))) | |
2 | fveq2 5554 | . . . 4 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) | |
3 | fveq2 5554 | . . . 4 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) | |
4 | fveq2 5554 | . . . . 5 ⊢ (𝑟 = 𝑅 → (.r‘𝑟) = (.r‘𝑅)) | |
5 | eqidd 2194 | . . . . 5 ⊢ (𝑟 = 𝑅 → 𝑥 = 𝑥) | |
6 | fveq2 5554 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (invr‘𝑟) = (invr‘𝑅)) | |
7 | 6 | fveq1d 5556 | . . . . 5 ⊢ (𝑟 = 𝑅 → ((invr‘𝑟)‘𝑦) = ((invr‘𝑅)‘𝑦)) |
8 | 4, 5, 7 | oveq123d 5939 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑥(.r‘𝑟)((invr‘𝑟)‘𝑦)) = (𝑥(.r‘𝑅)((invr‘𝑅)‘𝑦))) |
9 | 2, 3, 8 | mpoeq123dv 5980 | . . 3 ⊢ (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r‘𝑟)((invr‘𝑟)‘𝑦))) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Unit‘𝑅) ↦ (𝑥(.r‘𝑅)((invr‘𝑅)‘𝑦)))) |
10 | dvrfvald.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
11 | 10 | elexd 2773 | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) |
12 | basfn 12676 | . . . . 5 ⊢ Base Fn V | |
13 | funfvex 5571 | . . . . . 6 ⊢ ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V) | |
14 | 13 | funfni 5354 | . . . . 5 ⊢ ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V) |
15 | 12, 11, 14 | sylancr 414 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) ∈ V) |
16 | eqidd 2194 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑅) = (Base‘𝑅)) | |
17 | eqidd 2194 | . . . . . 6 ⊢ (𝜑 → (Unit‘𝑅) = (Unit‘𝑅)) | |
18 | 16, 17, 10 | unitssd 13605 | . . . . 5 ⊢ (𝜑 → (Unit‘𝑅) ⊆ (Base‘𝑅)) |
19 | 15, 18 | ssexd 4169 | . . . 4 ⊢ (𝜑 → (Unit‘𝑅) ∈ V) |
20 | mpoexga 6265 | . . . 4 ⊢ (((Base‘𝑅) ∈ V ∧ (Unit‘𝑅) ∈ V) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Unit‘𝑅) ↦ (𝑥(.r‘𝑅)((invr‘𝑅)‘𝑦))) ∈ V) | |
21 | 15, 19, 20 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Unit‘𝑅) ↦ (𝑥(.r‘𝑅)((invr‘𝑅)‘𝑦))) ∈ V) |
22 | 1, 9, 11, 21 | fvmptd3 5651 | . 2 ⊢ (𝜑 → (/r‘𝑅) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Unit‘𝑅) ↦ (𝑥(.r‘𝑅)((invr‘𝑅)‘𝑦)))) |
23 | dvrfvald.d | . 2 ⊢ (𝜑 → / = (/r‘𝑅)) | |
24 | dvrfvald.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
25 | dvrfvald.u | . . 3 ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) | |
26 | dvrfvald.t | . . . 4 ⊢ (𝜑 → · = (.r‘𝑅)) | |
27 | eqidd 2194 | . . . 4 ⊢ (𝜑 → 𝑥 = 𝑥) | |
28 | dvrfvald.i | . . . . 5 ⊢ (𝜑 → 𝐼 = (invr‘𝑅)) | |
29 | 28 | fveq1d 5556 | . . . 4 ⊢ (𝜑 → (𝐼‘𝑦) = ((invr‘𝑅)‘𝑦)) |
30 | 26, 27, 29 | oveq123d 5939 | . . 3 ⊢ (𝜑 → (𝑥 · (𝐼‘𝑦)) = (𝑥(.r‘𝑅)((invr‘𝑅)‘𝑦))) |
31 | 24, 25, 30 | mpoeq123dv 5980 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Unit‘𝑅) ↦ (𝑥(.r‘𝑅)((invr‘𝑅)‘𝑦)))) |
32 | 22, 23, 31 | 3eqtr4d 2236 | 1 ⊢ (𝜑 → / = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 Fn wfn 5249 ‘cfv 5254 (class class class)co 5918 ∈ cmpo 5920 Basecbs 12618 .rcmulr 12696 SRingcsrg 13459 Unitcui 13583 invrcinvr 13616 /rcdvr 13627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-3 9042 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-plusg 12708 df-mulr 12709 df-0g 12869 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-mgp 13417 df-srg 13460 df-dvdsr 13585 df-unit 13586 df-dvr 13628 |
This theorem is referenced by: dvrvald 13630 |
Copyright terms: Public domain | W3C validator |