ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvrfvald GIF version

Theorem dvrfvald 13689
Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
dvrfvald.b (𝜑𝐵 = (Base‘𝑅))
dvrfvald.t (𝜑· = (.r𝑅))
dvrfvald.u (𝜑𝑈 = (Unit‘𝑅))
dvrfvald.i (𝜑𝐼 = (invr𝑅))
dvrfvald.d (𝜑/ = (/r𝑅))
dvrfvald.r (𝜑𝑅 ∈ SRing)
Assertion
Ref Expression
dvrfvald (𝜑/ = (𝑥𝐵, 𝑦𝑈 ↦ (𝑥 · (𝐼𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐼,𝑦   𝑥,𝑅,𝑦   𝑥, · ,𝑦   𝑥,𝑈,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   / (𝑥,𝑦)

Proof of Theorem dvrfvald
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 df-dvr 13688 . . 3 /r = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r𝑟)((invr𝑟)‘𝑦))))
2 fveq2 5558 . . . 4 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
3 fveq2 5558 . . . 4 (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅))
4 fveq2 5558 . . . . 5 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
5 eqidd 2197 . . . . 5 (𝑟 = 𝑅𝑥 = 𝑥)
6 fveq2 5558 . . . . . 6 (𝑟 = 𝑅 → (invr𝑟) = (invr𝑅))
76fveq1d 5560 . . . . 5 (𝑟 = 𝑅 → ((invr𝑟)‘𝑦) = ((invr𝑅)‘𝑦))
84, 5, 7oveq123d 5943 . . . 4 (𝑟 = 𝑅 → (𝑥(.r𝑟)((invr𝑟)‘𝑦)) = (𝑥(.r𝑅)((invr𝑅)‘𝑦)))
92, 3, 8mpoeq123dv 5984 . . 3 (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r𝑟)((invr𝑟)‘𝑦))) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Unit‘𝑅) ↦ (𝑥(.r𝑅)((invr𝑅)‘𝑦))))
10 dvrfvald.r . . . 4 (𝜑𝑅 ∈ SRing)
1110elexd 2776 . . 3 (𝜑𝑅 ∈ V)
12 basfn 12736 . . . . 5 Base Fn V
13 funfvex 5575 . . . . . 6 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
1413funfni 5358 . . . . 5 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
1512, 11, 14sylancr 414 . . . 4 (𝜑 → (Base‘𝑅) ∈ V)
16 eqidd 2197 . . . . . 6 (𝜑 → (Base‘𝑅) = (Base‘𝑅))
17 eqidd 2197 . . . . . 6 (𝜑 → (Unit‘𝑅) = (Unit‘𝑅))
1816, 17, 10unitssd 13665 . . . . 5 (𝜑 → (Unit‘𝑅) ⊆ (Base‘𝑅))
1915, 18ssexd 4173 . . . 4 (𝜑 → (Unit‘𝑅) ∈ V)
20 mpoexga 6270 . . . 4 (((Base‘𝑅) ∈ V ∧ (Unit‘𝑅) ∈ V) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Unit‘𝑅) ↦ (𝑥(.r𝑅)((invr𝑅)‘𝑦))) ∈ V)
2115, 19, 20syl2anc 411 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Unit‘𝑅) ↦ (𝑥(.r𝑅)((invr𝑅)‘𝑦))) ∈ V)
221, 9, 11, 21fvmptd3 5655 . 2 (𝜑 → (/r𝑅) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Unit‘𝑅) ↦ (𝑥(.r𝑅)((invr𝑅)‘𝑦))))
23 dvrfvald.d . 2 (𝜑/ = (/r𝑅))
24 dvrfvald.b . . 3 (𝜑𝐵 = (Base‘𝑅))
25 dvrfvald.u . . 3 (𝜑𝑈 = (Unit‘𝑅))
26 dvrfvald.t . . . 4 (𝜑· = (.r𝑅))
27 eqidd 2197 . . . 4 (𝜑𝑥 = 𝑥)
28 dvrfvald.i . . . . 5 (𝜑𝐼 = (invr𝑅))
2928fveq1d 5560 . . . 4 (𝜑 → (𝐼𝑦) = ((invr𝑅)‘𝑦))
3026, 27, 29oveq123d 5943 . . 3 (𝜑 → (𝑥 · (𝐼𝑦)) = (𝑥(.r𝑅)((invr𝑅)‘𝑦)))
3124, 25, 30mpoeq123dv 5984 . 2 (𝜑 → (𝑥𝐵, 𝑦𝑈 ↦ (𝑥 · (𝐼𝑦))) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Unit‘𝑅) ↦ (𝑥(.r𝑅)((invr𝑅)‘𝑦))))
3222, 23, 313eqtr4d 2239 1 (𝜑/ = (𝑥𝐵, 𝑦𝑈 ↦ (𝑥 · (𝐼𝑦))))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  Vcvv 2763   Fn wfn 5253  cfv 5258  (class class class)co 5922  cmpo 5924  Basecbs 12678  .rcmulr 12756  SRingcsrg 13519  Unitcui 13643  invrcinvr 13676  /rcdvr 13687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-mgp 13477  df-srg 13520  df-dvdsr 13645  df-unit 13646  df-dvr 13688
This theorem is referenced by:  dvrvald  13690
  Copyright terms: Public domain W3C validator