![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvrfvald | GIF version |
Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof shortened by AV, 2-Mar-2024.) |
Ref | Expression |
---|---|
dvrfvald.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
dvrfvald.t | ⊢ (𝜑 → · = (.r‘𝑅)) |
dvrfvald.u | ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) |
dvrfvald.i | ⊢ (𝜑 → 𝐼 = (invr‘𝑅)) |
dvrfvald.d | ⊢ (𝜑 → / = (/r‘𝑅)) |
dvrfvald.r | ⊢ (𝜑 → 𝑅 ∈ SRing) |
Ref | Expression |
---|---|
dvrfvald | ⊢ (𝜑 → / = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dvr 13631 | . . 3 ⊢ /r = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r‘𝑟)((invr‘𝑟)‘𝑦)))) | |
2 | fveq2 5555 | . . . 4 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) | |
3 | fveq2 5555 | . . . 4 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) | |
4 | fveq2 5555 | . . . . 5 ⊢ (𝑟 = 𝑅 → (.r‘𝑟) = (.r‘𝑅)) | |
5 | eqidd 2194 | . . . . 5 ⊢ (𝑟 = 𝑅 → 𝑥 = 𝑥) | |
6 | fveq2 5555 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (invr‘𝑟) = (invr‘𝑅)) | |
7 | 6 | fveq1d 5557 | . . . . 5 ⊢ (𝑟 = 𝑅 → ((invr‘𝑟)‘𝑦) = ((invr‘𝑅)‘𝑦)) |
8 | 4, 5, 7 | oveq123d 5940 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑥(.r‘𝑟)((invr‘𝑟)‘𝑦)) = (𝑥(.r‘𝑅)((invr‘𝑅)‘𝑦))) |
9 | 2, 3, 8 | mpoeq123dv 5981 | . . 3 ⊢ (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r‘𝑟)((invr‘𝑟)‘𝑦))) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Unit‘𝑅) ↦ (𝑥(.r‘𝑅)((invr‘𝑅)‘𝑦)))) |
10 | dvrfvald.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
11 | 10 | elexd 2773 | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) |
12 | basfn 12679 | . . . . 5 ⊢ Base Fn V | |
13 | funfvex 5572 | . . . . . 6 ⊢ ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V) | |
14 | 13 | funfni 5355 | . . . . 5 ⊢ ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V) |
15 | 12, 11, 14 | sylancr 414 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) ∈ V) |
16 | eqidd 2194 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑅) = (Base‘𝑅)) | |
17 | eqidd 2194 | . . . . . 6 ⊢ (𝜑 → (Unit‘𝑅) = (Unit‘𝑅)) | |
18 | 16, 17, 10 | unitssd 13608 | . . . . 5 ⊢ (𝜑 → (Unit‘𝑅) ⊆ (Base‘𝑅)) |
19 | 15, 18 | ssexd 4170 | . . . 4 ⊢ (𝜑 → (Unit‘𝑅) ∈ V) |
20 | mpoexga 6267 | . . . 4 ⊢ (((Base‘𝑅) ∈ V ∧ (Unit‘𝑅) ∈ V) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Unit‘𝑅) ↦ (𝑥(.r‘𝑅)((invr‘𝑅)‘𝑦))) ∈ V) | |
21 | 15, 19, 20 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Unit‘𝑅) ↦ (𝑥(.r‘𝑅)((invr‘𝑅)‘𝑦))) ∈ V) |
22 | 1, 9, 11, 21 | fvmptd3 5652 | . 2 ⊢ (𝜑 → (/r‘𝑅) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Unit‘𝑅) ↦ (𝑥(.r‘𝑅)((invr‘𝑅)‘𝑦)))) |
23 | dvrfvald.d | . 2 ⊢ (𝜑 → / = (/r‘𝑅)) | |
24 | dvrfvald.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
25 | dvrfvald.u | . . 3 ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) | |
26 | dvrfvald.t | . . . 4 ⊢ (𝜑 → · = (.r‘𝑅)) | |
27 | eqidd 2194 | . . . 4 ⊢ (𝜑 → 𝑥 = 𝑥) | |
28 | dvrfvald.i | . . . . 5 ⊢ (𝜑 → 𝐼 = (invr‘𝑅)) | |
29 | 28 | fveq1d 5557 | . . . 4 ⊢ (𝜑 → (𝐼‘𝑦) = ((invr‘𝑅)‘𝑦)) |
30 | 26, 27, 29 | oveq123d 5940 | . . 3 ⊢ (𝜑 → (𝑥 · (𝐼‘𝑦)) = (𝑥(.r‘𝑅)((invr‘𝑅)‘𝑦))) |
31 | 24, 25, 30 | mpoeq123dv 5981 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Unit‘𝑅) ↦ (𝑥(.r‘𝑅)((invr‘𝑅)‘𝑦)))) |
32 | 22, 23, 31 | 3eqtr4d 2236 | 1 ⊢ (𝜑 → / = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 Fn wfn 5250 ‘cfv 5255 (class class class)co 5919 ∈ cmpo 5921 Basecbs 12621 .rcmulr 12699 SRingcsrg 13462 Unitcui 13586 invrcinvr 13619 /rcdvr 13630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-inn 8985 df-2 9043 df-3 9044 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-plusg 12711 df-mulr 12712 df-0g 12872 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-mgp 13420 df-srg 13463 df-dvdsr 13588 df-unit 13589 df-dvr 13631 |
This theorem is referenced by: dvrvald 13633 |
Copyright terms: Public domain | W3C validator |