ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvrfvald GIF version

Theorem dvrfvald 13965
Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
dvrfvald.b (𝜑𝐵 = (Base‘𝑅))
dvrfvald.t (𝜑· = (.r𝑅))
dvrfvald.u (𝜑𝑈 = (Unit‘𝑅))
dvrfvald.i (𝜑𝐼 = (invr𝑅))
dvrfvald.d (𝜑/ = (/r𝑅))
dvrfvald.r (𝜑𝑅 ∈ SRing)
Assertion
Ref Expression
dvrfvald (𝜑/ = (𝑥𝐵, 𝑦𝑈 ↦ (𝑥 · (𝐼𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐼,𝑦   𝑥,𝑅,𝑦   𝑥, · ,𝑦   𝑥,𝑈,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   / (𝑥,𝑦)

Proof of Theorem dvrfvald
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 df-dvr 13964 . . 3 /r = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r𝑟)((invr𝑟)‘𝑦))))
2 fveq2 5588 . . . 4 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
3 fveq2 5588 . . . 4 (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅))
4 fveq2 5588 . . . . 5 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
5 eqidd 2207 . . . . 5 (𝑟 = 𝑅𝑥 = 𝑥)
6 fveq2 5588 . . . . . 6 (𝑟 = 𝑅 → (invr𝑟) = (invr𝑅))
76fveq1d 5590 . . . . 5 (𝑟 = 𝑅 → ((invr𝑟)‘𝑦) = ((invr𝑅)‘𝑦))
84, 5, 7oveq123d 5977 . . . 4 (𝑟 = 𝑅 → (𝑥(.r𝑟)((invr𝑟)‘𝑦)) = (𝑥(.r𝑅)((invr𝑅)‘𝑦)))
92, 3, 8mpoeq123dv 6019 . . 3 (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r𝑟)((invr𝑟)‘𝑦))) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Unit‘𝑅) ↦ (𝑥(.r𝑅)((invr𝑅)‘𝑦))))
10 dvrfvald.r . . . 4 (𝜑𝑅 ∈ SRing)
1110elexd 2787 . . 3 (𝜑𝑅 ∈ V)
12 basfn 12960 . . . . 5 Base Fn V
13 funfvex 5605 . . . . . 6 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
1413funfni 5384 . . . . 5 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
1512, 11, 14sylancr 414 . . . 4 (𝜑 → (Base‘𝑅) ∈ V)
16 eqidd 2207 . . . . . 6 (𝜑 → (Base‘𝑅) = (Base‘𝑅))
17 eqidd 2207 . . . . . 6 (𝜑 → (Unit‘𝑅) = (Unit‘𝑅))
1816, 17, 10unitssd 13941 . . . . 5 (𝜑 → (Unit‘𝑅) ⊆ (Base‘𝑅))
1915, 18ssexd 4191 . . . 4 (𝜑 → (Unit‘𝑅) ∈ V)
20 mpoexga 6310 . . . 4 (((Base‘𝑅) ∈ V ∧ (Unit‘𝑅) ∈ V) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Unit‘𝑅) ↦ (𝑥(.r𝑅)((invr𝑅)‘𝑦))) ∈ V)
2115, 19, 20syl2anc 411 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Unit‘𝑅) ↦ (𝑥(.r𝑅)((invr𝑅)‘𝑦))) ∈ V)
221, 9, 11, 21fvmptd3 5685 . 2 (𝜑 → (/r𝑅) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Unit‘𝑅) ↦ (𝑥(.r𝑅)((invr𝑅)‘𝑦))))
23 dvrfvald.d . 2 (𝜑/ = (/r𝑅))
24 dvrfvald.b . . 3 (𝜑𝐵 = (Base‘𝑅))
25 dvrfvald.u . . 3 (𝜑𝑈 = (Unit‘𝑅))
26 dvrfvald.t . . . 4 (𝜑· = (.r𝑅))
27 eqidd 2207 . . . 4 (𝜑𝑥 = 𝑥)
28 dvrfvald.i . . . . 5 (𝜑𝐼 = (invr𝑅))
2928fveq1d 5590 . . . 4 (𝜑 → (𝐼𝑦) = ((invr𝑅)‘𝑦))
3026, 27, 29oveq123d 5977 . . 3 (𝜑 → (𝑥 · (𝐼𝑦)) = (𝑥(.r𝑅)((invr𝑅)‘𝑦)))
3124, 25, 30mpoeq123dv 6019 . 2 (𝜑 → (𝑥𝐵, 𝑦𝑈 ↦ (𝑥 · (𝐼𝑦))) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Unit‘𝑅) ↦ (𝑥(.r𝑅)((invr𝑅)‘𝑦))))
3222, 23, 313eqtr4d 2249 1 (𝜑/ = (𝑥𝐵, 𝑦𝑈 ↦ (𝑥 · (𝐼𝑦))))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  Vcvv 2773   Fn wfn 5274  cfv 5279  (class class class)co 5956  cmpo 5958  Basecbs 12902  .rcmulr 12980  SRingcsrg 13795  Unitcui 13919  invrcinvr 13952  /rcdvr 13963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-addcom 8040  ax-addass 8042  ax-i2m1 8045  ax-0lt1 8046  ax-0id 8048  ax-rnegex 8049  ax-pre-ltirr 8052  ax-pre-ltadd 8056
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-pnf 8124  df-mnf 8125  df-ltxr 8127  df-inn 9052  df-2 9110  df-3 9111  df-ndx 12905  df-slot 12906  df-base 12908  df-sets 12909  df-plusg 12992  df-mulr 12993  df-0g 13160  df-mgm 13258  df-sgrp 13304  df-mnd 13319  df-mgp 13753  df-srg 13796  df-dvdsr 13921  df-unit 13922  df-dvr 13964
This theorem is referenced by:  dvrvald  13966
  Copyright terms: Public domain W3C validator