| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvrfvald | GIF version | ||
| Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof shortened by AV, 2-Mar-2024.) |
| Ref | Expression |
|---|---|
| dvrfvald.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| dvrfvald.t | ⊢ (𝜑 → · = (.r‘𝑅)) |
| dvrfvald.u | ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) |
| dvrfvald.i | ⊢ (𝜑 → 𝐼 = (invr‘𝑅)) |
| dvrfvald.d | ⊢ (𝜑 → / = (/r‘𝑅)) |
| dvrfvald.r | ⊢ (𝜑 → 𝑅 ∈ SRing) |
| Ref | Expression |
|---|---|
| dvrfvald | ⊢ (𝜑 → / = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dvr 13964 | . . 3 ⊢ /r = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r‘𝑟)((invr‘𝑟)‘𝑦)))) | |
| 2 | fveq2 5588 | . . . 4 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) | |
| 3 | fveq2 5588 | . . . 4 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) | |
| 4 | fveq2 5588 | . . . . 5 ⊢ (𝑟 = 𝑅 → (.r‘𝑟) = (.r‘𝑅)) | |
| 5 | eqidd 2207 | . . . . 5 ⊢ (𝑟 = 𝑅 → 𝑥 = 𝑥) | |
| 6 | fveq2 5588 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (invr‘𝑟) = (invr‘𝑅)) | |
| 7 | 6 | fveq1d 5590 | . . . . 5 ⊢ (𝑟 = 𝑅 → ((invr‘𝑟)‘𝑦) = ((invr‘𝑅)‘𝑦)) |
| 8 | 4, 5, 7 | oveq123d 5977 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑥(.r‘𝑟)((invr‘𝑟)‘𝑦)) = (𝑥(.r‘𝑅)((invr‘𝑅)‘𝑦))) |
| 9 | 2, 3, 8 | mpoeq123dv 6019 | . . 3 ⊢ (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r‘𝑟)((invr‘𝑟)‘𝑦))) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Unit‘𝑅) ↦ (𝑥(.r‘𝑅)((invr‘𝑅)‘𝑦)))) |
| 10 | dvrfvald.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
| 11 | 10 | elexd 2787 | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) |
| 12 | basfn 12960 | . . . . 5 ⊢ Base Fn V | |
| 13 | funfvex 5605 | . . . . . 6 ⊢ ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V) | |
| 14 | 13 | funfni 5384 | . . . . 5 ⊢ ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V) |
| 15 | 12, 11, 14 | sylancr 414 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) ∈ V) |
| 16 | eqidd 2207 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑅) = (Base‘𝑅)) | |
| 17 | eqidd 2207 | . . . . . 6 ⊢ (𝜑 → (Unit‘𝑅) = (Unit‘𝑅)) | |
| 18 | 16, 17, 10 | unitssd 13941 | . . . . 5 ⊢ (𝜑 → (Unit‘𝑅) ⊆ (Base‘𝑅)) |
| 19 | 15, 18 | ssexd 4191 | . . . 4 ⊢ (𝜑 → (Unit‘𝑅) ∈ V) |
| 20 | mpoexga 6310 | . . . 4 ⊢ (((Base‘𝑅) ∈ V ∧ (Unit‘𝑅) ∈ V) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Unit‘𝑅) ↦ (𝑥(.r‘𝑅)((invr‘𝑅)‘𝑦))) ∈ V) | |
| 21 | 15, 19, 20 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Unit‘𝑅) ↦ (𝑥(.r‘𝑅)((invr‘𝑅)‘𝑦))) ∈ V) |
| 22 | 1, 9, 11, 21 | fvmptd3 5685 | . 2 ⊢ (𝜑 → (/r‘𝑅) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Unit‘𝑅) ↦ (𝑥(.r‘𝑅)((invr‘𝑅)‘𝑦)))) |
| 23 | dvrfvald.d | . 2 ⊢ (𝜑 → / = (/r‘𝑅)) | |
| 24 | dvrfvald.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
| 25 | dvrfvald.u | . . 3 ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) | |
| 26 | dvrfvald.t | . . . 4 ⊢ (𝜑 → · = (.r‘𝑅)) | |
| 27 | eqidd 2207 | . . . 4 ⊢ (𝜑 → 𝑥 = 𝑥) | |
| 28 | dvrfvald.i | . . . . 5 ⊢ (𝜑 → 𝐼 = (invr‘𝑅)) | |
| 29 | 28 | fveq1d 5590 | . . . 4 ⊢ (𝜑 → (𝐼‘𝑦) = ((invr‘𝑅)‘𝑦)) |
| 30 | 26, 27, 29 | oveq123d 5977 | . . 3 ⊢ (𝜑 → (𝑥 · (𝐼‘𝑦)) = (𝑥(.r‘𝑅)((invr‘𝑅)‘𝑦))) |
| 31 | 24, 25, 30 | mpoeq123dv 6019 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Unit‘𝑅) ↦ (𝑥(.r‘𝑅)((invr‘𝑅)‘𝑦)))) |
| 32 | 22, 23, 31 | 3eqtr4d 2249 | 1 ⊢ (𝜑 → / = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 Fn wfn 5274 ‘cfv 5279 (class class class)co 5956 ∈ cmpo 5958 Basecbs 12902 .rcmulr 12980 SRingcsrg 13795 Unitcui 13919 invrcinvr 13952 /rcdvr 13963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-addcom 8040 ax-addass 8042 ax-i2m1 8045 ax-0lt1 8046 ax-0id 8048 ax-rnegex 8049 ax-pre-ltirr 8052 ax-pre-ltadd 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-pnf 8124 df-mnf 8125 df-ltxr 8127 df-inn 9052 df-2 9110 df-3 9111 df-ndx 12905 df-slot 12906 df-base 12908 df-sets 12909 df-plusg 12992 df-mulr 12993 df-0g 13160 df-mgm 13258 df-sgrp 13304 df-mnd 13319 df-mgp 13753 df-srg 13796 df-dvdsr 13921 df-unit 13922 df-dvr 13964 |
| This theorem is referenced by: dvrvald 13966 |
| Copyright terms: Public domain | W3C validator |