| Step | Hyp | Ref
| Expression |
| 1 | | df-bl 14102 |
. . 3
⊢ ball =
(𝑑 ∈ V ↦ (𝑥 ∈ dom dom 𝑑, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑟})) |
| 2 | 1 | a1i 9 |
. 2
⊢ (𝐷 ∈ (PsMet‘𝑋) → ball = (𝑑 ∈ V ↦ (𝑥 ∈ dom dom 𝑑, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑟}))) |
| 3 | | dmeq 4866 |
. . . . 5
⊢ (𝑑 = 𝐷 → dom 𝑑 = dom 𝐷) |
| 4 | 3 | dmeqd 4868 |
. . . 4
⊢ (𝑑 = 𝐷 → dom dom 𝑑 = dom dom 𝐷) |
| 5 | | psmetdmdm 14560 |
. . . . 5
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷) |
| 6 | 5 | eqcomd 2202 |
. . . 4
⊢ (𝐷 ∈ (PsMet‘𝑋) → dom dom 𝐷 = 𝑋) |
| 7 | 4, 6 | sylan9eqr 2251 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = 𝑋) |
| 8 | | eqidd 2197 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → ℝ* =
ℝ*) |
| 9 | | simpr 110 |
. . . . . 6
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷) |
| 10 | 9 | oveqd 5939 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑥𝑑𝑦) = (𝑥𝐷𝑦)) |
| 11 | 10 | breq1d 4043 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → ((𝑥𝑑𝑦) < 𝑟 ↔ (𝑥𝐷𝑦) < 𝑟)) |
| 12 | 7, 11 | rabeqbidv 2758 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑟} = {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) |
| 13 | 7, 8, 12 | mpoeq123dv 5984 |
. 2
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑥 ∈ dom dom 𝑑, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑟}) = (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟})) |
| 14 | | elex 2774 |
. 2
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ∈ V) |
| 15 | | ssrab2 3268 |
. . . . . 6
⊢ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ⊆ 𝑋 |
| 16 | | psmetrel 14558 |
. . . . . . . . 9
⊢ Rel
PsMet |
| 17 | | relelfvdm 5590 |
. . . . . . . . 9
⊢ ((Rel
PsMet ∧ 𝐷 ∈
(PsMet‘𝑋)) →
𝑋 ∈ dom
PsMet) |
| 18 | 16, 17 | mpan 424 |
. . . . . . . 8
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ dom PsMet) |
| 19 | 18 | adantr 276 |
. . . . . . 7
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*)) → 𝑋 ∈ dom
PsMet) |
| 20 | | elpw2g 4189 |
. . . . . . 7
⊢ (𝑋 ∈ dom PsMet → ({𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋 ↔ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ⊆ 𝑋)) |
| 21 | 19, 20 | syl 14 |
. . . . . 6
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*)) → ({𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋 ↔ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ⊆ 𝑋)) |
| 22 | 15, 21 | mpbiri 168 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*)) → {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋) |
| 23 | 22 | ralrimivva 2579 |
. . . 4
⊢ (𝐷 ∈ (PsMet‘𝑋) → ∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ* {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋) |
| 24 | | eqid 2196 |
. . . . 5
⊢ (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) = (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) |
| 25 | 24 | fmpo 6259 |
. . . 4
⊢
(∀𝑥 ∈
𝑋 ∀𝑟 ∈ ℝ*
{𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋 ↔ (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}):(𝑋 ×
ℝ*)⟶𝒫 𝑋) |
| 26 | 23, 25 | sylib 122 |
. . 3
⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}):(𝑋 ×
ℝ*)⟶𝒫 𝑋) |
| 27 | | xrex 9931 |
. . . 4
⊢
ℝ* ∈ V |
| 28 | | xpexg 4777 |
. . . 4
⊢ ((𝑋 ∈ dom PsMet ∧
ℝ* ∈ V) → (𝑋 × ℝ*) ∈
V) |
| 29 | 18, 27, 28 | sylancl 413 |
. . 3
⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝑋 × ℝ*) ∈
V) |
| 30 | 18 | pwexd 4214 |
. . 3
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝒫 𝑋 ∈ V) |
| 31 | | fex2 5426 |
. . 3
⊢ (((𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}):(𝑋 ×
ℝ*)⟶𝒫 𝑋 ∧ (𝑋 × ℝ*) ∈ V ∧
𝒫 𝑋 ∈ V)
→ (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) ∈ V) |
| 32 | 26, 29, 30, 31 | syl3anc 1249 |
. 2
⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) ∈ V) |
| 33 | 2, 13, 14, 32 | fvmptd 5642 |
1
⊢ (𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷) = (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟})) |