ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blfvalps GIF version

Theorem blfvalps 14927
Description: The value of the ball function. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
blfvalps (𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷) = (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}))
Distinct variable groups:   𝑥,𝑟,𝑦,𝐷   𝑋,𝑟,𝑥,𝑦

Proof of Theorem blfvalps
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 df-bl 14378 . . 3 ball = (𝑑 ∈ V ↦ (𝑥 ∈ dom dom 𝑑, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑟}))
21a1i 9 . 2 (𝐷 ∈ (PsMet‘𝑋) → ball = (𝑑 ∈ V ↦ (𝑥 ∈ dom dom 𝑑, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑟})))
3 dmeq 4886 . . . . 5 (𝑑 = 𝐷 → dom 𝑑 = dom 𝐷)
43dmeqd 4888 . . . 4 (𝑑 = 𝐷 → dom dom 𝑑 = dom dom 𝐷)
5 psmetdmdm 14866 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷)
65eqcomd 2212 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → dom dom 𝐷 = 𝑋)
74, 6sylan9eqr 2261 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = 𝑋)
8 eqidd 2207 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → ℝ* = ℝ*)
9 simpr 110 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷)
109oveqd 5973 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑥𝑑𝑦) = (𝑥𝐷𝑦))
1110breq1d 4060 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → ((𝑥𝑑𝑦) < 𝑟 ↔ (𝑥𝐷𝑦) < 𝑟))
127, 11rabeqbidv 2768 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑟} = {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟})
137, 8, 12mpoeq123dv 6019 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑥 ∈ dom dom 𝑑, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑟}) = (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}))
14 elex 2785 . 2 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ∈ V)
15 ssrab2 3282 . . . . . 6 {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ⊆ 𝑋
16 psmetrel 14864 . . . . . . . . 9 Rel PsMet
17 relelfvdm 5620 . . . . . . . . 9 ((Rel PsMet ∧ 𝐷 ∈ (PsMet‘𝑋)) → 𝑋 ∈ dom PsMet)
1816, 17mpan 424 . . . . . . . 8 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ dom PsMet)
1918adantr 276 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑟 ∈ ℝ*)) → 𝑋 ∈ dom PsMet)
20 elpw2g 4207 . . . . . . 7 (𝑋 ∈ dom PsMet → ({𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋 ↔ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ⊆ 𝑋))
2119, 20syl 14 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑟 ∈ ℝ*)) → ({𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋 ↔ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ⊆ 𝑋))
2215, 21mpbiri 168 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑟 ∈ ℝ*)) → {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋)
2322ralrimivva 2589 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → ∀𝑥𝑋𝑟 ∈ ℝ* {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋)
24 eqid 2206 . . . . 5 (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) = (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟})
2524fmpo 6299 . . . 4 (∀𝑥𝑋𝑟 ∈ ℝ* {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋 ↔ (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}):(𝑋 × ℝ*)⟶𝒫 𝑋)
2623, 25sylib 122 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}):(𝑋 × ℝ*)⟶𝒫 𝑋)
27 xrex 9993 . . . 4 * ∈ V
28 xpexg 4796 . . . 4 ((𝑋 ∈ dom PsMet ∧ ℝ* ∈ V) → (𝑋 × ℝ*) ∈ V)
2918, 27, 28sylancl 413 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (𝑋 × ℝ*) ∈ V)
3018pwexd 4232 . . 3 (𝐷 ∈ (PsMet‘𝑋) → 𝒫 𝑋 ∈ V)
31 fex2 5453 . . 3 (((𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}):(𝑋 × ℝ*)⟶𝒫 𝑋 ∧ (𝑋 × ℝ*) ∈ V ∧ 𝒫 𝑋 ∈ V) → (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) ∈ V)
3226, 29, 30, 31syl3anc 1250 . 2 (𝐷 ∈ (PsMet‘𝑋) → (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) ∈ V)
332, 13, 14, 32fvmptd 5672 1 (𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷) = (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wral 2485  {crab 2489  Vcvv 2773  wss 3170  𝒫 cpw 3620   class class class wbr 4050  cmpt 4112   × cxp 4680  dom cdm 4682  Rel wrel 4687  wf 5275  cfv 5279  (class class class)co 5956  cmpo 5958  *cxr 8121   < clt 8122  PsMetcpsmet 14367  ballcbl 14370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-cnex 8031  ax-resscn 8032
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-fv 5287  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-map 6749  df-pnf 8124  df-mnf 8125  df-xr 8126  df-psmet 14375  df-bl 14378
This theorem is referenced by:  blfval  14928  blvalps  14930  blfps  14951
  Copyright terms: Public domain W3C validator