Step | Hyp | Ref
| Expression |
1 | | df-bl 12630 |
. . 3
⊢ ball =
(𝑑 ∈ V ↦ (𝑥 ∈ dom dom 𝑑, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑟})) |
2 | 1 | a1i 9 |
. 2
⊢ (𝐷 ∈ (PsMet‘𝑋) → ball = (𝑑 ∈ V ↦ (𝑥 ∈ dom dom 𝑑, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑟}))) |
3 | | dmeq 4804 |
. . . . 5
⊢ (𝑑 = 𝐷 → dom 𝑑 = dom 𝐷) |
4 | 3 | dmeqd 4806 |
. . . 4
⊢ (𝑑 = 𝐷 → dom dom 𝑑 = dom dom 𝐷) |
5 | | psmetdmdm 12964 |
. . . . 5
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷) |
6 | 5 | eqcomd 2171 |
. . . 4
⊢ (𝐷 ∈ (PsMet‘𝑋) → dom dom 𝐷 = 𝑋) |
7 | 4, 6 | sylan9eqr 2221 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = 𝑋) |
8 | | eqidd 2166 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → ℝ* =
ℝ*) |
9 | | simpr 109 |
. . . . . 6
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷) |
10 | 9 | oveqd 5859 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑥𝑑𝑦) = (𝑥𝐷𝑦)) |
11 | 10 | breq1d 3992 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → ((𝑥𝑑𝑦) < 𝑟 ↔ (𝑥𝐷𝑦) < 𝑟)) |
12 | 7, 11 | rabeqbidv 2721 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑟} = {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) |
13 | 7, 8, 12 | mpoeq123dv 5904 |
. 2
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑥 ∈ dom dom 𝑑, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑟}) = (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟})) |
14 | | elex 2737 |
. 2
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ∈ V) |
15 | | ssrab2 3227 |
. . . . . 6
⊢ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ⊆ 𝑋 |
16 | | psmetrel 12962 |
. . . . . . . . 9
⊢ Rel
PsMet |
17 | | relelfvdm 5518 |
. . . . . . . . 9
⊢ ((Rel
PsMet ∧ 𝐷 ∈
(PsMet‘𝑋)) →
𝑋 ∈ dom
PsMet) |
18 | 16, 17 | mpan 421 |
. . . . . . . 8
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ dom PsMet) |
19 | 18 | adantr 274 |
. . . . . . 7
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*)) → 𝑋 ∈ dom
PsMet) |
20 | | elpw2g 4135 |
. . . . . . 7
⊢ (𝑋 ∈ dom PsMet → ({𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋 ↔ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ⊆ 𝑋)) |
21 | 19, 20 | syl 14 |
. . . . . 6
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*)) → ({𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋 ↔ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ⊆ 𝑋)) |
22 | 15, 21 | mpbiri 167 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*)) → {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋) |
23 | 22 | ralrimivva 2548 |
. . . 4
⊢ (𝐷 ∈ (PsMet‘𝑋) → ∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ* {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋) |
24 | | eqid 2165 |
. . . . 5
⊢ (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) = (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) |
25 | 24 | fmpo 6169 |
. . . 4
⊢
(∀𝑥 ∈
𝑋 ∀𝑟 ∈ ℝ*
{𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋 ↔ (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}):(𝑋 ×
ℝ*)⟶𝒫 𝑋) |
26 | 23, 25 | sylib 121 |
. . 3
⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}):(𝑋 ×
ℝ*)⟶𝒫 𝑋) |
27 | | xrex 9792 |
. . . 4
⊢
ℝ* ∈ V |
28 | | xpexg 4718 |
. . . 4
⊢ ((𝑋 ∈ dom PsMet ∧
ℝ* ∈ V) → (𝑋 × ℝ*) ∈
V) |
29 | 18, 27, 28 | sylancl 410 |
. . 3
⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝑋 × ℝ*) ∈
V) |
30 | 18 | pwexd 4160 |
. . 3
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝒫 𝑋 ∈ V) |
31 | | fex2 5356 |
. . 3
⊢ (((𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}):(𝑋 ×
ℝ*)⟶𝒫 𝑋 ∧ (𝑋 × ℝ*) ∈ V ∧
𝒫 𝑋 ∈ V)
→ (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) ∈ V) |
32 | 26, 29, 30, 31 | syl3anc 1228 |
. 2
⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) ∈ V) |
33 | 2, 13, 14, 32 | fvmptd 5567 |
1
⊢ (𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷) = (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟})) |