ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgfvalg GIF version

Theorem mulgfvalg 12841
Description: Group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgval.b 𝐵 = (Base‘𝐺)
mulgval.p + = (+g𝐺)
mulgval.o 0 = (0g𝐺)
mulgval.i 𝐼 = (invg𝐺)
mulgval.t · = (.g𝐺)
Assertion
Ref Expression
mulgfvalg (𝐺𝑉· = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))))
Distinct variable groups:   𝑥, 0 ,𝑛   𝑥,𝐵,𝑛   𝑥, + ,𝑛   𝑥,𝐺,𝑛   𝑥,𝐼,𝑛
Allowed substitution hints:   · (𝑥,𝑛)   𝑉(𝑥,𝑛)

Proof of Theorem mulgfvalg
Dummy variables 𝑤 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgval.t . 2 · = (.g𝐺)
2 df-mulg 12840 . . 3 .g = (𝑤 ∈ V ↦ (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝑤) ↦ if(𝑛 = 0, (0g𝑤), seq1((+g𝑤), (ℕ × {𝑥})) / 𝑠if(0 < 𝑛, (𝑠𝑛), ((invg𝑤)‘(𝑠‘-𝑛))))))
3 eqidd 2174 . . . 4 (𝑤 = 𝐺 → ℤ = ℤ)
4 fveq2 5504 . . . . 5 (𝑤 = 𝐺 → (Base‘𝑤) = (Base‘𝐺))
5 mulgval.b . . . . 5 𝐵 = (Base‘𝐺)
64, 5eqtr4di 2224 . . . 4 (𝑤 = 𝐺 → (Base‘𝑤) = 𝐵)
7 fveq2 5504 . . . . . 6 (𝑤 = 𝐺 → (0g𝑤) = (0g𝐺))
8 mulgval.o . . . . . 6 0 = (0g𝐺)
97, 8eqtr4di 2224 . . . . 5 (𝑤 = 𝐺 → (0g𝑤) = 0 )
10 seqex 10412 . . . . . . 7 seq1((+g𝑤), (ℕ × {𝑥})) ∈ V
1110a1i 9 . . . . . 6 (𝑤 = 𝐺 → seq1((+g𝑤), (ℕ × {𝑥})) ∈ V)
12 id 19 . . . . . . . . 9 (𝑠 = seq1((+g𝑤), (ℕ × {𝑥})) → 𝑠 = seq1((+g𝑤), (ℕ × {𝑥})))
13 fveq2 5504 . . . . . . . . . . 11 (𝑤 = 𝐺 → (+g𝑤) = (+g𝐺))
14 mulgval.p . . . . . . . . . . 11 + = (+g𝐺)
1513, 14eqtr4di 2224 . . . . . . . . . 10 (𝑤 = 𝐺 → (+g𝑤) = + )
1615seqeq2d 10417 . . . . . . . . 9 (𝑤 = 𝐺 → seq1((+g𝑤), (ℕ × {𝑥})) = seq1( + , (ℕ × {𝑥})))
1712, 16sylan9eqr 2228 . . . . . . . 8 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → 𝑠 = seq1( + , (ℕ × {𝑥})))
1817fveq1d 5506 . . . . . . 7 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → (𝑠𝑛) = (seq1( + , (ℕ × {𝑥}))‘𝑛))
19 simpl 109 . . . . . . . . . 10 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → 𝑤 = 𝐺)
2019fveq2d 5508 . . . . . . . . 9 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → (invg𝑤) = (invg𝐺))
21 mulgval.i . . . . . . . . 9 𝐼 = (invg𝐺)
2220, 21eqtr4di 2224 . . . . . . . 8 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → (invg𝑤) = 𝐼)
2317fveq1d 5506 . . . . . . . 8 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → (𝑠‘-𝑛) = (seq1( + , (ℕ × {𝑥}))‘-𝑛))
2422, 23fveq12d 5511 . . . . . . 7 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → ((invg𝑤)‘(𝑠‘-𝑛)) = (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))
2518, 24ifeq12d 3548 . . . . . 6 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → if(0 < 𝑛, (𝑠𝑛), ((invg𝑤)‘(𝑠‘-𝑛))) = if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))
2611, 25csbied 3098 . . . . 5 (𝑤 = 𝐺seq1((+g𝑤), (ℕ × {𝑥})) / 𝑠if(0 < 𝑛, (𝑠𝑛), ((invg𝑤)‘(𝑠‘-𝑛))) = if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))
279, 26ifeq12d 3548 . . . 4 (𝑤 = 𝐺 → if(𝑛 = 0, (0g𝑤), seq1((+g𝑤), (ℕ × {𝑥})) / 𝑠if(0 < 𝑛, (𝑠𝑛), ((invg𝑤)‘(𝑠‘-𝑛)))) = if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))
283, 6, 27mpoeq123dv 5924 . . 3 (𝑤 = 𝐺 → (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝑤) ↦ if(𝑛 = 0, (0g𝑤), seq1((+g𝑤), (ℕ × {𝑥})) / 𝑠if(0 < 𝑛, (𝑠𝑛), ((invg𝑤)‘(𝑠‘-𝑛))))) = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))))
29 elex 2744 . . 3 (𝐺𝑉𝐺 ∈ V)
30 zex 9230 . . . 4 ℤ ∈ V
31 basfn 12482 . . . . . 6 Base Fn V
32 funfvex 5521 . . . . . . 7 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
3332funfni 5305 . . . . . 6 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
3431, 29, 33sylancr 414 . . . . 5 (𝐺𝑉 → (Base‘𝐺) ∈ V)
355, 34eqeltrid 2260 . . . 4 (𝐺𝑉𝐵 ∈ V)
36 mpoexga 6200 . . . 4 ((ℤ ∈ V ∧ 𝐵 ∈ V) → (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) ∈ V)
3730, 35, 36sylancr 414 . . 3 (𝐺𝑉 → (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) ∈ V)
382, 28, 29, 37fvmptd3 5598 . 2 (𝐺𝑉 → (.g𝐺) = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))))
391, 38eqtrid 2218 1 (𝐺𝑉· = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1351  wcel 2144  Vcvv 2733  csb 3052  ifcif 3529  {csn 3586   class class class wbr 3995   × cxp 4615   Fn wfn 5200  cfv 5205  cmpo 5864  0cc0 7783  1c1 7784   < clt 7963  -cneg 8100  cn 8887  cz 9221  seqcseq 10410  Basecbs 12425  +gcplusg 12489  0gc0g 12623  invgcminusg 12736  .gcmg 12839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 707  ax-5 1443  ax-7 1444  ax-gen 1445  ax-ie1 1489  ax-ie2 1490  ax-8 1500  ax-10 1501  ax-11 1502  ax-i12 1503  ax-bndl 1505  ax-4 1506  ax-17 1522  ax-i9 1526  ax-ial 1530  ax-i5r 1531  ax-13 2146  ax-14 2147  ax-ext 2155  ax-coll 4110  ax-sep 4113  ax-pow 4166  ax-pr 4200  ax-un 4424  ax-setind 4527  ax-iinf 4578  ax-cnex 7874  ax-resscn 7875  ax-1re 7877  ax-addrcl 7880
This theorem depends on definitions:  df-bi 117  df-3or 977  df-3an 978  df-tru 1354  df-nf 1457  df-sb 1759  df-eu 2025  df-mo 2026  df-clab 2160  df-cleq 2166  df-clel 2169  df-nfc 2304  df-ral 2456  df-rex 2457  df-reu 2458  df-rab 2460  df-v 2735  df-sbc 2959  df-csb 3053  df-un 3128  df-in 3130  df-ss 3137  df-if 3530  df-pw 3571  df-sn 3592  df-pr 3593  df-op 3595  df-uni 3803  df-int 3838  df-iun 3881  df-br 3996  df-opab 4057  df-mpt 4058  df-tr 4094  df-id 4284  df-iord 4357  df-on 4359  df-iom 4581  df-xp 4623  df-rel 4624  df-cnv 4625  df-co 4626  df-dm 4627  df-rn 4628  df-res 4629  df-ima 4630  df-iota 5167  df-fun 5207  df-fn 5208  df-f 5209  df-f1 5210  df-fo 5211  df-f1o 5212  df-fv 5213  df-ov 5865  df-oprab 5866  df-mpo 5867  df-1st 6128  df-2nd 6129  df-recs 6293  df-frec 6379  df-neg 8102  df-inn 8888  df-z 9222  df-seqfrec 10411  df-ndx 12428  df-slot 12429  df-base 12431  df-mulg 12840
This theorem is referenced by:  mulgval  12842  mulgfng  12843
  Copyright terms: Public domain W3C validator