Step | Hyp | Ref
| Expression |
1 | | mulgval.t |
. 2
⊢ · =
(.g‘𝐺) |
2 | | df-mulg 12840 |
. . 3
⊢
.g = (𝑤
∈ V ↦ (𝑛 ∈
ℤ, 𝑥 ∈
(Base‘𝑤) ↦
if(𝑛 = 0,
(0g‘𝑤),
⦋seq1((+g‘𝑤), (ℕ × {𝑥})) / 𝑠⦌if(0 < 𝑛, (𝑠‘𝑛), ((invg‘𝑤)‘(𝑠‘-𝑛)))))) |
3 | | eqidd 2174 |
. . . 4
⊢ (𝑤 = 𝐺 → ℤ = ℤ) |
4 | | fveq2 5504 |
. . . . 5
⊢ (𝑤 = 𝐺 → (Base‘𝑤) = (Base‘𝐺)) |
5 | | mulgval.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐺) |
6 | 4, 5 | eqtr4di 2224 |
. . . 4
⊢ (𝑤 = 𝐺 → (Base‘𝑤) = 𝐵) |
7 | | fveq2 5504 |
. . . . . 6
⊢ (𝑤 = 𝐺 → (0g‘𝑤) = (0g‘𝐺)) |
8 | | mulgval.o |
. . . . . 6
⊢ 0 =
(0g‘𝐺) |
9 | 7, 8 | eqtr4di 2224 |
. . . . 5
⊢ (𝑤 = 𝐺 → (0g‘𝑤) = 0 ) |
10 | | seqex 10412 |
. . . . . . 7
⊢
seq1((+g‘𝑤), (ℕ × {𝑥})) ∈ V |
11 | 10 | a1i 9 |
. . . . . 6
⊢ (𝑤 = 𝐺 → seq1((+g‘𝑤), (ℕ × {𝑥})) ∈ V) |
12 | | id 19 |
. . . . . . . . 9
⊢ (𝑠 =
seq1((+g‘𝑤), (ℕ × {𝑥})) → 𝑠 = seq1((+g‘𝑤), (ℕ × {𝑥}))) |
13 | | fveq2 5504 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝐺 → (+g‘𝑤) = (+g‘𝐺)) |
14 | | mulgval.p |
. . . . . . . . . . 11
⊢ + =
(+g‘𝐺) |
15 | 13, 14 | eqtr4di 2224 |
. . . . . . . . . 10
⊢ (𝑤 = 𝐺 → (+g‘𝑤) = + ) |
16 | 15 | seqeq2d 10417 |
. . . . . . . . 9
⊢ (𝑤 = 𝐺 → seq1((+g‘𝑤), (ℕ × {𝑥})) = seq1( + , (ℕ × {𝑥}))) |
17 | 12, 16 | sylan9eqr 2228 |
. . . . . . . 8
⊢ ((𝑤 = 𝐺 ∧ 𝑠 = seq1((+g‘𝑤), (ℕ × {𝑥}))) → 𝑠 = seq1( + , (ℕ × {𝑥}))) |
18 | 17 | fveq1d 5506 |
. . . . . . 7
⊢ ((𝑤 = 𝐺 ∧ 𝑠 = seq1((+g‘𝑤), (ℕ × {𝑥}))) → (𝑠‘𝑛) = (seq1( + , (ℕ × {𝑥}))‘𝑛)) |
19 | | simpl 109 |
. . . . . . . . . 10
⊢ ((𝑤 = 𝐺 ∧ 𝑠 = seq1((+g‘𝑤), (ℕ × {𝑥}))) → 𝑤 = 𝐺) |
20 | 19 | fveq2d 5508 |
. . . . . . . . 9
⊢ ((𝑤 = 𝐺 ∧ 𝑠 = seq1((+g‘𝑤), (ℕ × {𝑥}))) →
(invg‘𝑤) =
(invg‘𝐺)) |
21 | | mulgval.i |
. . . . . . . . 9
⊢ 𝐼 = (invg‘𝐺) |
22 | 20, 21 | eqtr4di 2224 |
. . . . . . . 8
⊢ ((𝑤 = 𝐺 ∧ 𝑠 = seq1((+g‘𝑤), (ℕ × {𝑥}))) →
(invg‘𝑤) =
𝐼) |
23 | 17 | fveq1d 5506 |
. . . . . . . 8
⊢ ((𝑤 = 𝐺 ∧ 𝑠 = seq1((+g‘𝑤), (ℕ × {𝑥}))) → (𝑠‘-𝑛) = (seq1( + , (ℕ × {𝑥}))‘-𝑛)) |
24 | 22, 23 | fveq12d 5511 |
. . . . . . 7
⊢ ((𝑤 = 𝐺 ∧ 𝑠 = seq1((+g‘𝑤), (ℕ × {𝑥}))) →
((invg‘𝑤)‘(𝑠‘-𝑛)) = (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))) |
25 | 18, 24 | ifeq12d 3548 |
. . . . . 6
⊢ ((𝑤 = 𝐺 ∧ 𝑠 = seq1((+g‘𝑤), (ℕ × {𝑥}))) → if(0 < 𝑛, (𝑠‘𝑛), ((invg‘𝑤)‘(𝑠‘-𝑛))) = if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))) |
26 | 11, 25 | csbied 3098 |
. . . . 5
⊢ (𝑤 = 𝐺 →
⦋seq1((+g‘𝑤), (ℕ × {𝑥})) / 𝑠⦌if(0 < 𝑛, (𝑠‘𝑛), ((invg‘𝑤)‘(𝑠‘-𝑛))) = if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))) |
27 | 9, 26 | ifeq12d 3548 |
. . . 4
⊢ (𝑤 = 𝐺 → if(𝑛 = 0, (0g‘𝑤),
⦋seq1((+g‘𝑤), (ℕ × {𝑥})) / 𝑠⦌if(0 < 𝑛, (𝑠‘𝑛), ((invg‘𝑤)‘(𝑠‘-𝑛)))) = if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) |
28 | 3, 6, 27 | mpoeq123dv 5924 |
. . 3
⊢ (𝑤 = 𝐺 → (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝑤) ↦ if(𝑛 = 0, (0g‘𝑤),
⦋seq1((+g‘𝑤), (ℕ × {𝑥})) / 𝑠⦌if(0 < 𝑛, (𝑠‘𝑛), ((invg‘𝑤)‘(𝑠‘-𝑛))))) = (𝑛 ∈ ℤ, 𝑥 ∈ 𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))) |
29 | | elex 2744 |
. . 3
⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) |
30 | | zex 9230 |
. . . 4
⊢ ℤ
∈ V |
31 | | basfn 12482 |
. . . . . 6
⊢ Base Fn
V |
32 | | funfvex 5521 |
. . . . . . 7
⊢ ((Fun
Base ∧ 𝐺 ∈ dom
Base) → (Base‘𝐺)
∈ V) |
33 | 32 | funfni 5305 |
. . . . . 6
⊢ ((Base Fn
V ∧ 𝐺 ∈ V) →
(Base‘𝐺) ∈
V) |
34 | 31, 29, 33 | sylancr 414 |
. . . . 5
⊢ (𝐺 ∈ 𝑉 → (Base‘𝐺) ∈ V) |
35 | 5, 34 | eqeltrid 2260 |
. . . 4
⊢ (𝐺 ∈ 𝑉 → 𝐵 ∈ V) |
36 | | mpoexga 6200 |
. . . 4
⊢ ((ℤ
∈ V ∧ 𝐵 ∈ V)
→ (𝑛 ∈ ℤ,
𝑥 ∈ 𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) ∈ V) |
37 | 30, 35, 36 | sylancr 414 |
. . 3
⊢ (𝐺 ∈ 𝑉 → (𝑛 ∈ ℤ, 𝑥 ∈ 𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) ∈ V) |
38 | 2, 28, 29, 37 | fvmptd3 5598 |
. 2
⊢ (𝐺 ∈ 𝑉 → (.g‘𝐺) = (𝑛 ∈ ℤ, 𝑥 ∈ 𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))) |
39 | 1, 38 | eqtrid 2218 |
1
⊢ (𝐺 ∈ 𝑉 → · = (𝑛 ∈ ℤ, 𝑥 ∈ 𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))) |