ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgfvalg GIF version

Theorem mulgfvalg 13327
Description: Group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgval.b 𝐵 = (Base‘𝐺)
mulgval.p + = (+g𝐺)
mulgval.o 0 = (0g𝐺)
mulgval.i 𝐼 = (invg𝐺)
mulgval.t · = (.g𝐺)
Assertion
Ref Expression
mulgfvalg (𝐺𝑉· = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))))
Distinct variable groups:   𝑥, 0 ,𝑛   𝑥,𝐵,𝑛   𝑥, + ,𝑛   𝑥,𝐺,𝑛   𝑥,𝐼,𝑛
Allowed substitution hints:   · (𝑥,𝑛)   𝑉(𝑥,𝑛)

Proof of Theorem mulgfvalg
Dummy variables 𝑤 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgval.t . 2 · = (.g𝐺)
2 df-mulg 13326 . . 3 .g = (𝑤 ∈ V ↦ (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝑤) ↦ if(𝑛 = 0, (0g𝑤), seq1((+g𝑤), (ℕ × {𝑥})) / 𝑠if(0 < 𝑛, (𝑠𝑛), ((invg𝑤)‘(𝑠‘-𝑛))))))
3 eqidd 2197 . . . 4 (𝑤 = 𝐺 → ℤ = ℤ)
4 fveq2 5561 . . . . 5 (𝑤 = 𝐺 → (Base‘𝑤) = (Base‘𝐺))
5 mulgval.b . . . . 5 𝐵 = (Base‘𝐺)
64, 5eqtr4di 2247 . . . 4 (𝑤 = 𝐺 → (Base‘𝑤) = 𝐵)
7 fveq2 5561 . . . . . 6 (𝑤 = 𝐺 → (0g𝑤) = (0g𝐺))
8 mulgval.o . . . . . 6 0 = (0g𝐺)
97, 8eqtr4di 2247 . . . . 5 (𝑤 = 𝐺 → (0g𝑤) = 0 )
10 seqex 10558 . . . . . . 7 seq1((+g𝑤), (ℕ × {𝑥})) ∈ V
1110a1i 9 . . . . . 6 (𝑤 = 𝐺 → seq1((+g𝑤), (ℕ × {𝑥})) ∈ V)
12 id 19 . . . . . . . . 9 (𝑠 = seq1((+g𝑤), (ℕ × {𝑥})) → 𝑠 = seq1((+g𝑤), (ℕ × {𝑥})))
13 fveq2 5561 . . . . . . . . . . 11 (𝑤 = 𝐺 → (+g𝑤) = (+g𝐺))
14 mulgval.p . . . . . . . . . . 11 + = (+g𝐺)
1513, 14eqtr4di 2247 . . . . . . . . . 10 (𝑤 = 𝐺 → (+g𝑤) = + )
1615seqeq2d 10563 . . . . . . . . 9 (𝑤 = 𝐺 → seq1((+g𝑤), (ℕ × {𝑥})) = seq1( + , (ℕ × {𝑥})))
1712, 16sylan9eqr 2251 . . . . . . . 8 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → 𝑠 = seq1( + , (ℕ × {𝑥})))
1817fveq1d 5563 . . . . . . 7 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → (𝑠𝑛) = (seq1( + , (ℕ × {𝑥}))‘𝑛))
19 simpl 109 . . . . . . . . . 10 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → 𝑤 = 𝐺)
2019fveq2d 5565 . . . . . . . . 9 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → (invg𝑤) = (invg𝐺))
21 mulgval.i . . . . . . . . 9 𝐼 = (invg𝐺)
2220, 21eqtr4di 2247 . . . . . . . 8 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → (invg𝑤) = 𝐼)
2317fveq1d 5563 . . . . . . . 8 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → (𝑠‘-𝑛) = (seq1( + , (ℕ × {𝑥}))‘-𝑛))
2422, 23fveq12d 5568 . . . . . . 7 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → ((invg𝑤)‘(𝑠‘-𝑛)) = (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))
2518, 24ifeq12d 3581 . . . . . 6 ((𝑤 = 𝐺𝑠 = seq1((+g𝑤), (ℕ × {𝑥}))) → if(0 < 𝑛, (𝑠𝑛), ((invg𝑤)‘(𝑠‘-𝑛))) = if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))
2611, 25csbied 3131 . . . . 5 (𝑤 = 𝐺seq1((+g𝑤), (ℕ × {𝑥})) / 𝑠if(0 < 𝑛, (𝑠𝑛), ((invg𝑤)‘(𝑠‘-𝑛))) = if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))
279, 26ifeq12d 3581 . . . 4 (𝑤 = 𝐺 → if(𝑛 = 0, (0g𝑤), seq1((+g𝑤), (ℕ × {𝑥})) / 𝑠if(0 < 𝑛, (𝑠𝑛), ((invg𝑤)‘(𝑠‘-𝑛)))) = if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))
283, 6, 27mpoeq123dv 5988 . . 3 (𝑤 = 𝐺 → (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝑤) ↦ if(𝑛 = 0, (0g𝑤), seq1((+g𝑤), (ℕ × {𝑥})) / 𝑠if(0 < 𝑛, (𝑠𝑛), ((invg𝑤)‘(𝑠‘-𝑛))))) = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))))
29 elex 2774 . . 3 (𝐺𝑉𝐺 ∈ V)
30 zex 9352 . . . 4 ℤ ∈ V
31 basfn 12761 . . . . . 6 Base Fn V
32 funfvex 5578 . . . . . . 7 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
3332funfni 5361 . . . . . 6 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
3431, 29, 33sylancr 414 . . . . 5 (𝐺𝑉 → (Base‘𝐺) ∈ V)
355, 34eqeltrid 2283 . . . 4 (𝐺𝑉𝐵 ∈ V)
36 mpoexga 6279 . . . 4 ((ℤ ∈ V ∧ 𝐵 ∈ V) → (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) ∈ V)
3730, 35, 36sylancr 414 . . 3 (𝐺𝑉 → (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) ∈ V)
382, 28, 29, 37fvmptd3 5658 . 2 (𝐺𝑉 → (.g𝐺) = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))))
391, 38eqtrid 2241 1 (𝐺𝑉· = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  Vcvv 2763  csb 3084  ifcif 3562  {csn 3623   class class class wbr 4034   × cxp 4662   Fn wfn 5254  cfv 5259  cmpo 5927  0cc0 7896  1c1 7897   < clt 8078  -cneg 8215  cn 9007  cz 9343  seqcseq 10556  Basecbs 12703  +gcplusg 12780  0gc0g 12958  invgcminusg 13203  .gcmg 13325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-neg 8217  df-inn 9008  df-z 9344  df-seqfrec 10557  df-ndx 12706  df-slot 12707  df-base 12709  df-mulg 13326
This theorem is referenced by:  mulgval  13328  mulgex  13329  mulgfng  13330  mulgpropdg  13370
  Copyright terms: Public domain W3C validator