| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tpfidisj | GIF version | ||
| Description: A triple is finite if it consists of three unequal sets. (Contributed by Jim Kingdon, 1-Oct-2022.) |
| Ref | Expression |
|---|---|
| tpfidisj.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| tpfidisj.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| tpfidisj.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| tpfidisj.ab | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| tpfidisj.ac | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| tpfidisj.bc | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
| Ref | Expression |
|---|---|
| tpfidisj | ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 3646 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 2 | tpfidisj.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | tpfidisj.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 4 | tpfidisj.ab | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 5 | prfidisj 7039 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ∈ Fin) | |
| 6 | 2, 3, 4, 5 | syl3anc 1250 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} ∈ Fin) |
| 7 | tpfidisj.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 8 | snfig 6920 | . . . 4 ⊢ (𝐶 ∈ 𝑋 → {𝐶} ∈ Fin) | |
| 9 | 7, 8 | syl 14 | . . 3 ⊢ (𝜑 → {𝐶} ∈ Fin) |
| 10 | tpfidisj.ac | . . . . . 6 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
| 11 | 10 | necomd 2463 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 𝐴) |
| 12 | tpfidisj.bc | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
| 13 | 12 | necomd 2463 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
| 14 | 11, 13 | nelprd 3664 | . . . 4 ⊢ (𝜑 → ¬ 𝐶 ∈ {𝐴, 𝐵}) |
| 15 | disjsn 3700 | . . . 4 ⊢ (({𝐴, 𝐵} ∩ {𝐶}) = ∅ ↔ ¬ 𝐶 ∈ {𝐴, 𝐵}) | |
| 16 | 14, 15 | sylibr 134 | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ∩ {𝐶}) = ∅) |
| 17 | unfidisj 7034 | . . 3 ⊢ (({𝐴, 𝐵} ∈ Fin ∧ {𝐶} ∈ Fin ∧ ({𝐴, 𝐵} ∩ {𝐶}) = ∅) → ({𝐴, 𝐵} ∪ {𝐶}) ∈ Fin) | |
| 18 | 6, 9, 16, 17 | syl3anc 1250 | . 2 ⊢ (𝜑 → ({𝐴, 𝐵} ∪ {𝐶}) ∈ Fin) |
| 19 | 1, 18 | eqeltrid 2293 | 1 ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 ∪ cun 3168 ∩ cin 3169 ∅c0 3464 {csn 3638 {cpr 3639 {ctp 3640 Fincfn 6840 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-tp 3646 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-1o 6515 df-er 6633 df-en 6841 df-fin 6843 |
| This theorem is referenced by: sumtp 11800 |
| Copyright terms: Public domain | W3C validator |