ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpfidisj GIF version

Theorem tpfidisj 6940
Description: A triple is finite if it consists of three unequal sets. (Contributed by Jim Kingdon, 1-Oct-2022.)
Hypotheses
Ref Expression
tpfidisj.a (𝜑𝐴𝑉)
tpfidisj.b (𝜑𝐵𝑊)
tpfidisj.c (𝜑𝐶𝑋)
tpfidisj.ab (𝜑𝐴𝐵)
tpfidisj.ac (𝜑𝐴𝐶)
tpfidisj.bc (𝜑𝐵𝐶)
Assertion
Ref Expression
tpfidisj (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin)

Proof of Theorem tpfidisj
StepHypRef Expression
1 df-tp 3612 . 2 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
2 tpfidisj.a . . . 4 (𝜑𝐴𝑉)
3 tpfidisj.b . . . 4 (𝜑𝐵𝑊)
4 tpfidisj.ab . . . 4 (𝜑𝐴𝐵)
5 prfidisj 6939 . . . 4 ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} ∈ Fin)
62, 3, 4, 5syl3anc 1248 . . 3 (𝜑 → {𝐴, 𝐵} ∈ Fin)
7 tpfidisj.c . . . 4 (𝜑𝐶𝑋)
8 snfig 6827 . . . 4 (𝐶𝑋 → {𝐶} ∈ Fin)
97, 8syl 14 . . 3 (𝜑 → {𝐶} ∈ Fin)
10 tpfidisj.ac . . . . . 6 (𝜑𝐴𝐶)
1110necomd 2443 . . . . 5 (𝜑𝐶𝐴)
12 tpfidisj.bc . . . . . 6 (𝜑𝐵𝐶)
1312necomd 2443 . . . . 5 (𝜑𝐶𝐵)
1411, 13nelprd 3630 . . . 4 (𝜑 → ¬ 𝐶 ∈ {𝐴, 𝐵})
15 disjsn 3666 . . . 4 (({𝐴, 𝐵} ∩ {𝐶}) = ∅ ↔ ¬ 𝐶 ∈ {𝐴, 𝐵})
1614, 15sylibr 134 . . 3 (𝜑 → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
17 unfidisj 6934 . . 3 (({𝐴, 𝐵} ∈ Fin ∧ {𝐶} ∈ Fin ∧ ({𝐴, 𝐵} ∩ {𝐶}) = ∅) → ({𝐴, 𝐵} ∪ {𝐶}) ∈ Fin)
186, 9, 16, 17syl3anc 1248 . 2 (𝜑 → ({𝐴, 𝐵} ∪ {𝐶}) ∈ Fin)
191, 18eqeltrid 2274 1 (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1363  wcel 2158  wne 2357  cun 3139  cin 3140  c0 3434  {csn 3604  {cpr 3605  {ctp 3606  Fincfn 6753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-tp 3612  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-1o 6430  df-er 6548  df-en 6754  df-fin 6756
This theorem is referenced by:  sumtp  11435
  Copyright terms: Public domain W3C validator