ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpfidisj GIF version

Theorem tpfidisj 7041
Description: A triple is finite if it consists of three unequal sets. (Contributed by Jim Kingdon, 1-Oct-2022.)
Hypotheses
Ref Expression
tpfidisj.a (𝜑𝐴𝑉)
tpfidisj.b (𝜑𝐵𝑊)
tpfidisj.c (𝜑𝐶𝑋)
tpfidisj.ab (𝜑𝐴𝐵)
tpfidisj.ac (𝜑𝐴𝐶)
tpfidisj.bc (𝜑𝐵𝐶)
Assertion
Ref Expression
tpfidisj (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin)

Proof of Theorem tpfidisj
StepHypRef Expression
1 df-tp 3646 . 2 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
2 tpfidisj.a . . . 4 (𝜑𝐴𝑉)
3 tpfidisj.b . . . 4 (𝜑𝐵𝑊)
4 tpfidisj.ab . . . 4 (𝜑𝐴𝐵)
5 prfidisj 7039 . . . 4 ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} ∈ Fin)
62, 3, 4, 5syl3anc 1250 . . 3 (𝜑 → {𝐴, 𝐵} ∈ Fin)
7 tpfidisj.c . . . 4 (𝜑𝐶𝑋)
8 snfig 6920 . . . 4 (𝐶𝑋 → {𝐶} ∈ Fin)
97, 8syl 14 . . 3 (𝜑 → {𝐶} ∈ Fin)
10 tpfidisj.ac . . . . . 6 (𝜑𝐴𝐶)
1110necomd 2463 . . . . 5 (𝜑𝐶𝐴)
12 tpfidisj.bc . . . . . 6 (𝜑𝐵𝐶)
1312necomd 2463 . . . . 5 (𝜑𝐶𝐵)
1411, 13nelprd 3664 . . . 4 (𝜑 → ¬ 𝐶 ∈ {𝐴, 𝐵})
15 disjsn 3700 . . . 4 (({𝐴, 𝐵} ∩ {𝐶}) = ∅ ↔ ¬ 𝐶 ∈ {𝐴, 𝐵})
1614, 15sylibr 134 . . 3 (𝜑 → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
17 unfidisj 7034 . . 3 (({𝐴, 𝐵} ∈ Fin ∧ {𝐶} ∈ Fin ∧ ({𝐴, 𝐵} ∩ {𝐶}) = ∅) → ({𝐴, 𝐵} ∪ {𝐶}) ∈ Fin)
186, 9, 16, 17syl3anc 1250 . 2 (𝜑 → ({𝐴, 𝐵} ∪ {𝐶}) ∈ Fin)
191, 18eqeltrid 2293 1 (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1373  wcel 2177  wne 2377  cun 3168  cin 3169  c0 3464  {csn 3638  {cpr 3639  {ctp 3640  Fincfn 6840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-tp 3646  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-1o 6515  df-er 6633  df-en 6841  df-fin 6843
This theorem is referenced by:  sumtp  11800
  Copyright terms: Public domain W3C validator