![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tpfidisj | GIF version |
Description: A triple is finite if it consists of three unequal sets. (Contributed by Jim Kingdon, 1-Oct-2022.) |
Ref | Expression |
---|---|
tpfidisj.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
tpfidisj.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
tpfidisj.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
tpfidisj.ab | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
tpfidisj.ac | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
tpfidisj.bc | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
Ref | Expression |
---|---|
tpfidisj | ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 3626 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
2 | tpfidisj.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | tpfidisj.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
4 | tpfidisj.ab | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
5 | prfidisj 6983 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ∈ Fin) | |
6 | 2, 3, 4, 5 | syl3anc 1249 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} ∈ Fin) |
7 | tpfidisj.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
8 | snfig 6868 | . . . 4 ⊢ (𝐶 ∈ 𝑋 → {𝐶} ∈ Fin) | |
9 | 7, 8 | syl 14 | . . 3 ⊢ (𝜑 → {𝐶} ∈ Fin) |
10 | tpfidisj.ac | . . . . . 6 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
11 | 10 | necomd 2450 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 𝐴) |
12 | tpfidisj.bc | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
13 | 12 | necomd 2450 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
14 | 11, 13 | nelprd 3644 | . . . 4 ⊢ (𝜑 → ¬ 𝐶 ∈ {𝐴, 𝐵}) |
15 | disjsn 3680 | . . . 4 ⊢ (({𝐴, 𝐵} ∩ {𝐶}) = ∅ ↔ ¬ 𝐶 ∈ {𝐴, 𝐵}) | |
16 | 14, 15 | sylibr 134 | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ∩ {𝐶}) = ∅) |
17 | unfidisj 6978 | . . 3 ⊢ (({𝐴, 𝐵} ∈ Fin ∧ {𝐶} ∈ Fin ∧ ({𝐴, 𝐵} ∩ {𝐶}) = ∅) → ({𝐴, 𝐵} ∪ {𝐶}) ∈ Fin) | |
18 | 6, 9, 16, 17 | syl3anc 1249 | . 2 ⊢ (𝜑 → ({𝐴, 𝐵} ∪ {𝐶}) ∈ Fin) |
19 | 1, 18 | eqeltrid 2280 | 1 ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ∪ cun 3151 ∩ cin 3152 ∅c0 3446 {csn 3618 {cpr 3619 {ctp 3620 Fincfn 6794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-tp 3626 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-1o 6469 df-er 6587 df-en 6795 df-fin 6797 |
This theorem is referenced by: sumtp 11557 |
Copyright terms: Public domain | W3C validator |