![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tpfidisj | GIF version |
Description: A triple is finite if it consists of three unequal sets. (Contributed by Jim Kingdon, 1-Oct-2022.) |
Ref | Expression |
---|---|
tpfidisj.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
tpfidisj.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
tpfidisj.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
tpfidisj.ab | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
tpfidisj.ac | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
tpfidisj.bc | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
Ref | Expression |
---|---|
tpfidisj | ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 3612 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
2 | tpfidisj.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | tpfidisj.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
4 | tpfidisj.ab | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
5 | prfidisj 6939 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ∈ Fin) | |
6 | 2, 3, 4, 5 | syl3anc 1248 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} ∈ Fin) |
7 | tpfidisj.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
8 | snfig 6827 | . . . 4 ⊢ (𝐶 ∈ 𝑋 → {𝐶} ∈ Fin) | |
9 | 7, 8 | syl 14 | . . 3 ⊢ (𝜑 → {𝐶} ∈ Fin) |
10 | tpfidisj.ac | . . . . . 6 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
11 | 10 | necomd 2443 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 𝐴) |
12 | tpfidisj.bc | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
13 | 12 | necomd 2443 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
14 | 11, 13 | nelprd 3630 | . . . 4 ⊢ (𝜑 → ¬ 𝐶 ∈ {𝐴, 𝐵}) |
15 | disjsn 3666 | . . . 4 ⊢ (({𝐴, 𝐵} ∩ {𝐶}) = ∅ ↔ ¬ 𝐶 ∈ {𝐴, 𝐵}) | |
16 | 14, 15 | sylibr 134 | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ∩ {𝐶}) = ∅) |
17 | unfidisj 6934 | . . 3 ⊢ (({𝐴, 𝐵} ∈ Fin ∧ {𝐶} ∈ Fin ∧ ({𝐴, 𝐵} ∩ {𝐶}) = ∅) → ({𝐴, 𝐵} ∪ {𝐶}) ∈ Fin) | |
18 | 6, 9, 16, 17 | syl3anc 1248 | . 2 ⊢ (𝜑 → ({𝐴, 𝐵} ∪ {𝐶}) ∈ Fin) |
19 | 1, 18 | eqeltrid 2274 | 1 ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1363 ∈ wcel 2158 ≠ wne 2357 ∪ cun 3139 ∩ cin 3140 ∅c0 3434 {csn 3604 {cpr 3605 {ctp 3606 Fincfn 6753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-if 3547 df-pw 3589 df-sn 3610 df-pr 3611 df-tp 3612 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-iord 4378 df-on 4380 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-1o 6430 df-er 6548 df-en 6754 df-fin 6756 |
This theorem is referenced by: sumtp 11435 |
Copyright terms: Public domain | W3C validator |