| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tpfidisj | GIF version | ||
| Description: A triple is finite if it consists of three unequal sets. (Contributed by Jim Kingdon, 1-Oct-2022.) |
| Ref | Expression |
|---|---|
| tpfidisj.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| tpfidisj.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| tpfidisj.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| tpfidisj.ab | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| tpfidisj.ac | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| tpfidisj.bc | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
| Ref | Expression |
|---|---|
| tpfidisj | ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 3674 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 2 | tpfidisj.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | tpfidisj.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 4 | tpfidisj.ab | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 5 | prfidisj 7085 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ∈ Fin) | |
| 6 | 2, 3, 4, 5 | syl3anc 1271 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} ∈ Fin) |
| 7 | tpfidisj.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 8 | snfig 6965 | . . . 4 ⊢ (𝐶 ∈ 𝑋 → {𝐶} ∈ Fin) | |
| 9 | 7, 8 | syl 14 | . . 3 ⊢ (𝜑 → {𝐶} ∈ Fin) |
| 10 | tpfidisj.ac | . . . . . 6 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
| 11 | 10 | necomd 2486 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 𝐴) |
| 12 | tpfidisj.bc | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
| 13 | 12 | necomd 2486 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
| 14 | 11, 13 | nelprd 3692 | . . . 4 ⊢ (𝜑 → ¬ 𝐶 ∈ {𝐴, 𝐵}) |
| 15 | disjsn 3728 | . . . 4 ⊢ (({𝐴, 𝐵} ∩ {𝐶}) = ∅ ↔ ¬ 𝐶 ∈ {𝐴, 𝐵}) | |
| 16 | 14, 15 | sylibr 134 | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ∩ {𝐶}) = ∅) |
| 17 | unfidisj 7080 | . . 3 ⊢ (({𝐴, 𝐵} ∈ Fin ∧ {𝐶} ∈ Fin ∧ ({𝐴, 𝐵} ∩ {𝐶}) = ∅) → ({𝐴, 𝐵} ∪ {𝐶}) ∈ Fin) | |
| 18 | 6, 9, 16, 17 | syl3anc 1271 | . 2 ⊢ (𝜑 → ({𝐴, 𝐵} ∪ {𝐶}) ∈ Fin) |
| 19 | 1, 18 | eqeltrid 2316 | 1 ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ∪ cun 3195 ∩ cin 3196 ∅c0 3491 {csn 3666 {cpr 3667 {ctp 3668 Fincfn 6885 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-1o 6560 df-er 6678 df-en 6886 df-fin 6888 |
| This theorem is referenced by: sumtp 11920 |
| Copyright terms: Public domain | W3C validator |