Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tpfidisj | GIF version |
Description: A triple is finite if it consists of three unequal sets. (Contributed by Jim Kingdon, 1-Oct-2022.) |
Ref | Expression |
---|---|
tpfidisj.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
tpfidisj.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
tpfidisj.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
tpfidisj.ab | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
tpfidisj.ac | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
tpfidisj.bc | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
Ref | Expression |
---|---|
tpfidisj | ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 3584 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
2 | tpfidisj.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | tpfidisj.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
4 | tpfidisj.ab | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
5 | prfidisj 6892 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ∈ Fin) | |
6 | 2, 3, 4, 5 | syl3anc 1228 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} ∈ Fin) |
7 | tpfidisj.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
8 | snfig 6780 | . . . 4 ⊢ (𝐶 ∈ 𝑋 → {𝐶} ∈ Fin) | |
9 | 7, 8 | syl 14 | . . 3 ⊢ (𝜑 → {𝐶} ∈ Fin) |
10 | tpfidisj.ac | . . . . . 6 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
11 | 10 | necomd 2422 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 𝐴) |
12 | tpfidisj.bc | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
13 | 12 | necomd 2422 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
14 | 11, 13 | nelprd 3602 | . . . 4 ⊢ (𝜑 → ¬ 𝐶 ∈ {𝐴, 𝐵}) |
15 | disjsn 3638 | . . . 4 ⊢ (({𝐴, 𝐵} ∩ {𝐶}) = ∅ ↔ ¬ 𝐶 ∈ {𝐴, 𝐵}) | |
16 | 14, 15 | sylibr 133 | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ∩ {𝐶}) = ∅) |
17 | unfidisj 6887 | . . 3 ⊢ (({𝐴, 𝐵} ∈ Fin ∧ {𝐶} ∈ Fin ∧ ({𝐴, 𝐵} ∩ {𝐶}) = ∅) → ({𝐴, 𝐵} ∪ {𝐶}) ∈ Fin) | |
18 | 6, 9, 16, 17 | syl3anc 1228 | . 2 ⊢ (𝜑 → ({𝐴, 𝐵} ∪ {𝐶}) ∈ Fin) |
19 | 1, 18 | eqeltrid 2253 | 1 ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1343 ∈ wcel 2136 ≠ wne 2336 ∪ cun 3114 ∩ cin 3115 ∅c0 3409 {csn 3576 {cpr 3577 {ctp 3578 Fincfn 6706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-tp 3584 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1o 6384 df-er 6501 df-en 6707 df-fin 6709 |
This theorem is referenced by: sumtp 11355 |
Copyright terms: Public domain | W3C validator |