Step | Hyp | Ref
| Expression |
1 | | fodjuf.fo |
. . . . 5
β’ (π β πΉ:πβontoβ(π΄ β π΅)) |
2 | | djulcl 7052 |
. . . . 5
β’ (π’ β π΄ β (inlβπ’) β (π΄ β π΅)) |
3 | | foelrn 5755 |
. . . . 5
β’ ((πΉ:πβontoβ(π΄ β π΅) β§ (inlβπ’) β (π΄ β π΅)) β βπ£ β π (inlβπ’) = (πΉβπ£)) |
4 | 1, 2, 3 | syl2an 289 |
. . . 4
β’ ((π β§ π’ β π΄) β βπ£ β π (inlβπ’) = (πΉβπ£)) |
5 | | fodjuf.p |
. . . . . 6
β’ π = (π¦ β π β¦ if(βπ§ β π΄ (πΉβπ¦) = (inlβπ§), β
, 1o)) |
6 | | fveqeq2 5526 |
. . . . . . . 8
β’ (π¦ = π£ β ((πΉβπ¦) = (inlβπ§) β (πΉβπ£) = (inlβπ§))) |
7 | 6 | rexbidv 2478 |
. . . . . . 7
β’ (π¦ = π£ β (βπ§ β π΄ (πΉβπ¦) = (inlβπ§) β βπ§ β π΄ (πΉβπ£) = (inlβπ§))) |
8 | 7 | ifbid 3557 |
. . . . . 6
β’ (π¦ = π£ β if(βπ§ β π΄ (πΉβπ¦) = (inlβπ§), β
, 1o) = if(βπ§ β π΄ (πΉβπ£) = (inlβπ§), β
, 1o)) |
9 | | simprl 529 |
. . . . . 6
β’ (((π β§ π’ β π΄) β§ (π£ β π β§ (inlβπ’) = (πΉβπ£))) β π£ β π) |
10 | | peano1 4595 |
. . . . . . . 8
β’ β
β Ο |
11 | 10 | a1i 9 |
. . . . . . 7
β’ (((π β§ π’ β π΄) β§ (π£ β π β§ (inlβπ’) = (πΉβπ£))) β β
β
Ο) |
12 | | 1onn 6523 |
. . . . . . . 8
β’
1o β Ο |
13 | 12 | a1i 9 |
. . . . . . 7
β’ (((π β§ π’ β π΄) β§ (π£ β π β§ (inlβπ’) = (πΉβπ£))) β 1o β
Ο) |
14 | 1 | fodjuomnilemdc 7144 |
. . . . . . . 8
β’ ((π β§ π£ β π) β DECID βπ§ β π΄ (πΉβπ£) = (inlβπ§)) |
15 | 14 | ad2ant2r 509 |
. . . . . . 7
β’ (((π β§ π’ β π΄) β§ (π£ β π β§ (inlβπ’) = (πΉβπ£))) β DECID βπ§ β π΄ (πΉβπ£) = (inlβπ§)) |
16 | 11, 13, 15 | ifcldcd 3572 |
. . . . . 6
β’ (((π β§ π’ β π΄) β§ (π£ β π β§ (inlβπ’) = (πΉβπ£))) β if(βπ§ β π΄ (πΉβπ£) = (inlβπ§), β
, 1o) β
Ο) |
17 | 5, 8, 9, 16 | fvmptd3 5611 |
. . . . 5
β’ (((π β§ π’ β π΄) β§ (π£ β π β§ (inlβπ’) = (πΉβπ£))) β (πβπ£) = if(βπ§ β π΄ (πΉβπ£) = (inlβπ§), β
, 1o)) |
18 | | fveqeq2 5526 |
. . . . . 6
β’ (π€ = π£ β ((πβπ€) = 1o β (πβπ£) = 1o)) |
19 | | fodju0.1 |
. . . . . . 7
β’ (π β βπ€ β π (πβπ€) = 1o) |
20 | 19 | ad2antrr 488 |
. . . . . 6
β’ (((π β§ π’ β π΄) β§ (π£ β π β§ (inlβπ’) = (πΉβπ£))) β βπ€ β π (πβπ€) = 1o) |
21 | 18, 20, 9 | rspcdva 2848 |
. . . . 5
β’ (((π β§ π’ β π΄) β§ (π£ β π β§ (inlβπ’) = (πΉβπ£))) β (πβπ£) = 1o) |
22 | | simplr 528 |
. . . . . . 7
β’ (((π β§ π’ β π΄) β§ (π£ β π β§ (inlβπ’) = (πΉβπ£))) β π’ β π΄) |
23 | | simprr 531 |
. . . . . . . 8
β’ (((π β§ π’ β π΄) β§ (π£ β π β§ (inlβπ’) = (πΉβπ£))) β (inlβπ’) = (πΉβπ£)) |
24 | 23 | eqcomd 2183 |
. . . . . . 7
β’ (((π β§ π’ β π΄) β§ (π£ β π β§ (inlβπ’) = (πΉβπ£))) β (πΉβπ£) = (inlβπ’)) |
25 | | fveq2 5517 |
. . . . . . . 8
β’ (π§ = π’ β (inlβπ§) = (inlβπ’)) |
26 | 25 | rspceeqv 2861 |
. . . . . . 7
β’ ((π’ β π΄ β§ (πΉβπ£) = (inlβπ’)) β βπ§ β π΄ (πΉβπ£) = (inlβπ§)) |
27 | 22, 24, 26 | syl2anc 411 |
. . . . . 6
β’ (((π β§ π’ β π΄) β§ (π£ β π β§ (inlβπ’) = (πΉβπ£))) β βπ§ β π΄ (πΉβπ£) = (inlβπ§)) |
28 | 27 | iftrued 3543 |
. . . . 5
β’ (((π β§ π’ β π΄) β§ (π£ β π β§ (inlβπ’) = (πΉβπ£))) β if(βπ§ β π΄ (πΉβπ£) = (inlβπ§), β
, 1o) =
β
) |
29 | 17, 21, 28 | 3eqtr3rd 2219 |
. . . 4
β’ (((π β§ π’ β π΄) β§ (π£ β π β§ (inlβπ’) = (πΉβπ£))) β β
=
1o) |
30 | 4, 29 | rexlimddv 2599 |
. . 3
β’ ((π β§ π’ β π΄) β β
=
1o) |
31 | | 1n0 6435 |
. . . . 5
β’
1o β β
|
32 | 31 | nesymi 2393 |
. . . 4
β’ Β¬
β
= 1o |
33 | 32 | a1i 9 |
. . 3
β’ ((π β§ π’ β π΄) β Β¬ β
=
1o) |
34 | 30, 33 | pm2.65da 661 |
. 2
β’ (π β Β¬ π’ β π΄) |
35 | 34 | eq0rdv 3469 |
1
β’ (π β π΄ = β
) |