ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodju0 GIF version

Theorem fodju0 7147
Description: Lemma for fodjuomni 7149 and fodjumkv 7160. A condition which shows that 𝐴 is empty. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
Hypotheses
Ref Expression
fodjuf.fo (πœ‘ β†’ 𝐹:𝑂–ontoβ†’(𝐴 βŠ” 𝐡))
fodjuf.p 𝑃 = (𝑦 ∈ 𝑂 ↦ if(βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘¦) = (inlβ€˜π‘§), βˆ…, 1o))
fodju0.1 (πœ‘ β†’ βˆ€π‘€ ∈ 𝑂 (π‘ƒβ€˜π‘€) = 1o)
Assertion
Ref Expression
fodju0 (πœ‘ β†’ 𝐴 = βˆ…)
Distinct variable groups:   πœ‘,𝑦,𝑧   𝑦,𝑂,𝑧   𝑧,𝐴   𝑧,𝐡   𝑧,𝐹   𝑦,𝐴   𝑦,𝐹   𝑀,𝑂   𝑀,𝑃
Allowed substitution hints:   πœ‘(𝑀)   𝐴(𝑀)   𝐡(𝑦,𝑀)   𝑃(𝑦,𝑧)   𝐹(𝑀)

Proof of Theorem fodju0
Dummy variables 𝑒 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fodjuf.fo . . . . 5 (πœ‘ β†’ 𝐹:𝑂–ontoβ†’(𝐴 βŠ” 𝐡))
2 djulcl 7052 . . . . 5 (𝑒 ∈ 𝐴 β†’ (inlβ€˜π‘’) ∈ (𝐴 βŠ” 𝐡))
3 foelrn 5755 . . . . 5 ((𝐹:𝑂–ontoβ†’(𝐴 βŠ” 𝐡) ∧ (inlβ€˜π‘’) ∈ (𝐴 βŠ” 𝐡)) β†’ βˆƒπ‘£ ∈ 𝑂 (inlβ€˜π‘’) = (πΉβ€˜π‘£))
41, 2, 3syl2an 289 . . . 4 ((πœ‘ ∧ 𝑒 ∈ 𝐴) β†’ βˆƒπ‘£ ∈ 𝑂 (inlβ€˜π‘’) = (πΉβ€˜π‘£))
5 fodjuf.p . . . . . 6 𝑃 = (𝑦 ∈ 𝑂 ↦ if(βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘¦) = (inlβ€˜π‘§), βˆ…, 1o))
6 fveqeq2 5526 . . . . . . . 8 (𝑦 = 𝑣 β†’ ((πΉβ€˜π‘¦) = (inlβ€˜π‘§) ↔ (πΉβ€˜π‘£) = (inlβ€˜π‘§)))
76rexbidv 2478 . . . . . . 7 (𝑦 = 𝑣 β†’ (βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘¦) = (inlβ€˜π‘§) ↔ βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘£) = (inlβ€˜π‘§)))
87ifbid 3557 . . . . . 6 (𝑦 = 𝑣 β†’ if(βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘¦) = (inlβ€˜π‘§), βˆ…, 1o) = if(βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘£) = (inlβ€˜π‘§), βˆ…, 1o))
9 simprl 529 . . . . . 6 (((πœ‘ ∧ 𝑒 ∈ 𝐴) ∧ (𝑣 ∈ 𝑂 ∧ (inlβ€˜π‘’) = (πΉβ€˜π‘£))) β†’ 𝑣 ∈ 𝑂)
10 peano1 4595 . . . . . . . 8 βˆ… ∈ Ο‰
1110a1i 9 . . . . . . 7 (((πœ‘ ∧ 𝑒 ∈ 𝐴) ∧ (𝑣 ∈ 𝑂 ∧ (inlβ€˜π‘’) = (πΉβ€˜π‘£))) β†’ βˆ… ∈ Ο‰)
12 1onn 6523 . . . . . . . 8 1o ∈ Ο‰
1312a1i 9 . . . . . . 7 (((πœ‘ ∧ 𝑒 ∈ 𝐴) ∧ (𝑣 ∈ 𝑂 ∧ (inlβ€˜π‘’) = (πΉβ€˜π‘£))) β†’ 1o ∈ Ο‰)
141fodjuomnilemdc 7144 . . . . . . . 8 ((πœ‘ ∧ 𝑣 ∈ 𝑂) β†’ DECID βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘£) = (inlβ€˜π‘§))
1514ad2ant2r 509 . . . . . . 7 (((πœ‘ ∧ 𝑒 ∈ 𝐴) ∧ (𝑣 ∈ 𝑂 ∧ (inlβ€˜π‘’) = (πΉβ€˜π‘£))) β†’ DECID βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘£) = (inlβ€˜π‘§))
1611, 13, 15ifcldcd 3572 . . . . . 6 (((πœ‘ ∧ 𝑒 ∈ 𝐴) ∧ (𝑣 ∈ 𝑂 ∧ (inlβ€˜π‘’) = (πΉβ€˜π‘£))) β†’ if(βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘£) = (inlβ€˜π‘§), βˆ…, 1o) ∈ Ο‰)
175, 8, 9, 16fvmptd3 5611 . . . . 5 (((πœ‘ ∧ 𝑒 ∈ 𝐴) ∧ (𝑣 ∈ 𝑂 ∧ (inlβ€˜π‘’) = (πΉβ€˜π‘£))) β†’ (π‘ƒβ€˜π‘£) = if(βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘£) = (inlβ€˜π‘§), βˆ…, 1o))
18 fveqeq2 5526 . . . . . 6 (𝑀 = 𝑣 β†’ ((π‘ƒβ€˜π‘€) = 1o ↔ (π‘ƒβ€˜π‘£) = 1o))
19 fodju0.1 . . . . . . 7 (πœ‘ β†’ βˆ€π‘€ ∈ 𝑂 (π‘ƒβ€˜π‘€) = 1o)
2019ad2antrr 488 . . . . . 6 (((πœ‘ ∧ 𝑒 ∈ 𝐴) ∧ (𝑣 ∈ 𝑂 ∧ (inlβ€˜π‘’) = (πΉβ€˜π‘£))) β†’ βˆ€π‘€ ∈ 𝑂 (π‘ƒβ€˜π‘€) = 1o)
2118, 20, 9rspcdva 2848 . . . . 5 (((πœ‘ ∧ 𝑒 ∈ 𝐴) ∧ (𝑣 ∈ 𝑂 ∧ (inlβ€˜π‘’) = (πΉβ€˜π‘£))) β†’ (π‘ƒβ€˜π‘£) = 1o)
22 simplr 528 . . . . . . 7 (((πœ‘ ∧ 𝑒 ∈ 𝐴) ∧ (𝑣 ∈ 𝑂 ∧ (inlβ€˜π‘’) = (πΉβ€˜π‘£))) β†’ 𝑒 ∈ 𝐴)
23 simprr 531 . . . . . . . 8 (((πœ‘ ∧ 𝑒 ∈ 𝐴) ∧ (𝑣 ∈ 𝑂 ∧ (inlβ€˜π‘’) = (πΉβ€˜π‘£))) β†’ (inlβ€˜π‘’) = (πΉβ€˜π‘£))
2423eqcomd 2183 . . . . . . 7 (((πœ‘ ∧ 𝑒 ∈ 𝐴) ∧ (𝑣 ∈ 𝑂 ∧ (inlβ€˜π‘’) = (πΉβ€˜π‘£))) β†’ (πΉβ€˜π‘£) = (inlβ€˜π‘’))
25 fveq2 5517 . . . . . . . 8 (𝑧 = 𝑒 β†’ (inlβ€˜π‘§) = (inlβ€˜π‘’))
2625rspceeqv 2861 . . . . . . 7 ((𝑒 ∈ 𝐴 ∧ (πΉβ€˜π‘£) = (inlβ€˜π‘’)) β†’ βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘£) = (inlβ€˜π‘§))
2722, 24, 26syl2anc 411 . . . . . 6 (((πœ‘ ∧ 𝑒 ∈ 𝐴) ∧ (𝑣 ∈ 𝑂 ∧ (inlβ€˜π‘’) = (πΉβ€˜π‘£))) β†’ βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘£) = (inlβ€˜π‘§))
2827iftrued 3543 . . . . 5 (((πœ‘ ∧ 𝑒 ∈ 𝐴) ∧ (𝑣 ∈ 𝑂 ∧ (inlβ€˜π‘’) = (πΉβ€˜π‘£))) β†’ if(βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘£) = (inlβ€˜π‘§), βˆ…, 1o) = βˆ…)
2917, 21, 283eqtr3rd 2219 . . . 4 (((πœ‘ ∧ 𝑒 ∈ 𝐴) ∧ (𝑣 ∈ 𝑂 ∧ (inlβ€˜π‘’) = (πΉβ€˜π‘£))) β†’ βˆ… = 1o)
304, 29rexlimddv 2599 . . 3 ((πœ‘ ∧ 𝑒 ∈ 𝐴) β†’ βˆ… = 1o)
31 1n0 6435 . . . . 5 1o β‰  βˆ…
3231nesymi 2393 . . . 4 Β¬ βˆ… = 1o
3332a1i 9 . . 3 ((πœ‘ ∧ 𝑒 ∈ 𝐴) β†’ Β¬ βˆ… = 1o)
3430, 33pm2.65da 661 . 2 (πœ‘ β†’ Β¬ 𝑒 ∈ 𝐴)
3534eq0rdv 3469 1 (πœ‘ β†’ 𝐴 = βˆ…)
Colors of variables: wff set class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 104  DECID wdc 834   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  βˆƒwrex 2456  βˆ…c0 3424  ifcif 3536   ↦ cmpt 4066  Ο‰com 4591  β€“ontoβ†’wfo 5216  β€˜cfv 5218  1oc1o 6412   βŠ” cdju 7038  inlcinl 7046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-1st 6143  df-2nd 6144  df-1o 6419  df-dju 7039  df-inl 7048  df-inr 7049
This theorem is referenced by:  fodjuomnilemres  7148  fodjumkvlemres  7159
  Copyright terms: Public domain W3C validator