ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodju0 GIF version

Theorem fodju0 7248
Description: Lemma for fodjuomni 7250 and fodjumkv 7261. A condition which shows that 𝐴 is empty. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
Hypotheses
Ref Expression
fodjuf.fo (𝜑𝐹:𝑂onto→(𝐴𝐵))
fodjuf.p 𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
fodju0.1 (𝜑 → ∀𝑤𝑂 (𝑃𝑤) = 1o)
Assertion
Ref Expression
fodju0 (𝜑𝐴 = ∅)
Distinct variable groups:   𝜑,𝑦,𝑧   𝑦,𝑂,𝑧   𝑧,𝐴   𝑧,𝐵   𝑧,𝐹   𝑦,𝐴   𝑦,𝐹   𝑤,𝑂   𝑤,𝑃
Allowed substitution hints:   𝜑(𝑤)   𝐴(𝑤)   𝐵(𝑦,𝑤)   𝑃(𝑦,𝑧)   𝐹(𝑤)

Proof of Theorem fodju0
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fodjuf.fo . . . . 5 (𝜑𝐹:𝑂onto→(𝐴𝐵))
2 djulcl 7152 . . . . 5 (𝑢𝐴 → (inl‘𝑢) ∈ (𝐴𝐵))
3 foelrn 5820 . . . . 5 ((𝐹:𝑂onto→(𝐴𝐵) ∧ (inl‘𝑢) ∈ (𝐴𝐵)) → ∃𝑣𝑂 (inl‘𝑢) = (𝐹𝑣))
41, 2, 3syl2an 289 . . . 4 ((𝜑𝑢𝐴) → ∃𝑣𝑂 (inl‘𝑢) = (𝐹𝑣))
5 fodjuf.p . . . . . 6 𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
6 fveqeq2 5584 . . . . . . . 8 (𝑦 = 𝑣 → ((𝐹𝑦) = (inl‘𝑧) ↔ (𝐹𝑣) = (inl‘𝑧)))
76rexbidv 2506 . . . . . . 7 (𝑦 = 𝑣 → (∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧) ↔ ∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧)))
87ifbid 3591 . . . . . 6 (𝑦 = 𝑣 → if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o) = if(∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧), ∅, 1o))
9 simprl 529 . . . . . 6 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → 𝑣𝑂)
10 peano1 4641 . . . . . . . 8 ∅ ∈ ω
1110a1i 9 . . . . . . 7 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → ∅ ∈ ω)
12 1onn 6605 . . . . . . . 8 1o ∈ ω
1312a1i 9 . . . . . . 7 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → 1o ∈ ω)
141fodjuomnilemdc 7245 . . . . . . . 8 ((𝜑𝑣𝑂) → DECID𝑧𝐴 (𝐹𝑣) = (inl‘𝑧))
1514ad2ant2r 509 . . . . . . 7 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → DECID𝑧𝐴 (𝐹𝑣) = (inl‘𝑧))
1611, 13, 15ifcldcd 3607 . . . . . 6 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → if(∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧), ∅, 1o) ∈ ω)
175, 8, 9, 16fvmptd3 5672 . . . . 5 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → (𝑃𝑣) = if(∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧), ∅, 1o))
18 fveqeq2 5584 . . . . . 6 (𝑤 = 𝑣 → ((𝑃𝑤) = 1o ↔ (𝑃𝑣) = 1o))
19 fodju0.1 . . . . . . 7 (𝜑 → ∀𝑤𝑂 (𝑃𝑤) = 1o)
2019ad2antrr 488 . . . . . 6 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → ∀𝑤𝑂 (𝑃𝑤) = 1o)
2118, 20, 9rspcdva 2881 . . . . 5 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → (𝑃𝑣) = 1o)
22 simplr 528 . . . . . . 7 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → 𝑢𝐴)
23 simprr 531 . . . . . . . 8 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → (inl‘𝑢) = (𝐹𝑣))
2423eqcomd 2210 . . . . . . 7 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → (𝐹𝑣) = (inl‘𝑢))
25 fveq2 5575 . . . . . . . 8 (𝑧 = 𝑢 → (inl‘𝑧) = (inl‘𝑢))
2625rspceeqv 2894 . . . . . . 7 ((𝑢𝐴 ∧ (𝐹𝑣) = (inl‘𝑢)) → ∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧))
2722, 24, 26syl2anc 411 . . . . . 6 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → ∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧))
2827iftrued 3577 . . . . 5 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → if(∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧), ∅, 1o) = ∅)
2917, 21, 283eqtr3rd 2246 . . . 4 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → ∅ = 1o)
304, 29rexlimddv 2627 . . 3 ((𝜑𝑢𝐴) → ∅ = 1o)
31 1n0 6517 . . . . 5 1o ≠ ∅
3231nesymi 2421 . . . 4 ¬ ∅ = 1o
3332a1i 9 . . 3 ((𝜑𝑢𝐴) → ¬ ∅ = 1o)
3430, 33pm2.65da 662 . 2 (𝜑 → ¬ 𝑢𝐴)
3534eq0rdv 3504 1 (𝜑𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 835   = wceq 1372  wcel 2175  wral 2483  wrex 2484  c0 3459  ifcif 3570  cmpt 4104  ωcom 4637  ontowfo 5268  cfv 5270  1oc1o 6494  cdju 7138  inlcinl 7146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-1st 6225  df-2nd 6226  df-1o 6501  df-dju 7139  df-inl 7148  df-inr 7149
This theorem is referenced by:  fodjuomnilemres  7249  fodjumkvlemres  7260
  Copyright terms: Public domain W3C validator