ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodju0 GIF version

Theorem fodju0 7213
Description: Lemma for fodjuomni 7215 and fodjumkv 7226. A condition which shows that 𝐴 is empty. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
Hypotheses
Ref Expression
fodjuf.fo (𝜑𝐹:𝑂onto→(𝐴𝐵))
fodjuf.p 𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
fodju0.1 (𝜑 → ∀𝑤𝑂 (𝑃𝑤) = 1o)
Assertion
Ref Expression
fodju0 (𝜑𝐴 = ∅)
Distinct variable groups:   𝜑,𝑦,𝑧   𝑦,𝑂,𝑧   𝑧,𝐴   𝑧,𝐵   𝑧,𝐹   𝑦,𝐴   𝑦,𝐹   𝑤,𝑂   𝑤,𝑃
Allowed substitution hints:   𝜑(𝑤)   𝐴(𝑤)   𝐵(𝑦,𝑤)   𝑃(𝑦,𝑧)   𝐹(𝑤)

Proof of Theorem fodju0
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fodjuf.fo . . . . 5 (𝜑𝐹:𝑂onto→(𝐴𝐵))
2 djulcl 7117 . . . . 5 (𝑢𝐴 → (inl‘𝑢) ∈ (𝐴𝐵))
3 foelrn 5799 . . . . 5 ((𝐹:𝑂onto→(𝐴𝐵) ∧ (inl‘𝑢) ∈ (𝐴𝐵)) → ∃𝑣𝑂 (inl‘𝑢) = (𝐹𝑣))
41, 2, 3syl2an 289 . . . 4 ((𝜑𝑢𝐴) → ∃𝑣𝑂 (inl‘𝑢) = (𝐹𝑣))
5 fodjuf.p . . . . . 6 𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
6 fveqeq2 5567 . . . . . . . 8 (𝑦 = 𝑣 → ((𝐹𝑦) = (inl‘𝑧) ↔ (𝐹𝑣) = (inl‘𝑧)))
76rexbidv 2498 . . . . . . 7 (𝑦 = 𝑣 → (∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧) ↔ ∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧)))
87ifbid 3582 . . . . . 6 (𝑦 = 𝑣 → if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o) = if(∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧), ∅, 1o))
9 simprl 529 . . . . . 6 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → 𝑣𝑂)
10 peano1 4630 . . . . . . . 8 ∅ ∈ ω
1110a1i 9 . . . . . . 7 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → ∅ ∈ ω)
12 1onn 6578 . . . . . . . 8 1o ∈ ω
1312a1i 9 . . . . . . 7 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → 1o ∈ ω)
141fodjuomnilemdc 7210 . . . . . . . 8 ((𝜑𝑣𝑂) → DECID𝑧𝐴 (𝐹𝑣) = (inl‘𝑧))
1514ad2ant2r 509 . . . . . . 7 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → DECID𝑧𝐴 (𝐹𝑣) = (inl‘𝑧))
1611, 13, 15ifcldcd 3597 . . . . . 6 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → if(∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧), ∅, 1o) ∈ ω)
175, 8, 9, 16fvmptd3 5655 . . . . 5 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → (𝑃𝑣) = if(∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧), ∅, 1o))
18 fveqeq2 5567 . . . . . 6 (𝑤 = 𝑣 → ((𝑃𝑤) = 1o ↔ (𝑃𝑣) = 1o))
19 fodju0.1 . . . . . . 7 (𝜑 → ∀𝑤𝑂 (𝑃𝑤) = 1o)
2019ad2antrr 488 . . . . . 6 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → ∀𝑤𝑂 (𝑃𝑤) = 1o)
2118, 20, 9rspcdva 2873 . . . . 5 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → (𝑃𝑣) = 1o)
22 simplr 528 . . . . . . 7 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → 𝑢𝐴)
23 simprr 531 . . . . . . . 8 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → (inl‘𝑢) = (𝐹𝑣))
2423eqcomd 2202 . . . . . . 7 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → (𝐹𝑣) = (inl‘𝑢))
25 fveq2 5558 . . . . . . . 8 (𝑧 = 𝑢 → (inl‘𝑧) = (inl‘𝑢))
2625rspceeqv 2886 . . . . . . 7 ((𝑢𝐴 ∧ (𝐹𝑣) = (inl‘𝑢)) → ∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧))
2722, 24, 26syl2anc 411 . . . . . 6 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → ∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧))
2827iftrued 3568 . . . . 5 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → if(∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧), ∅, 1o) = ∅)
2917, 21, 283eqtr3rd 2238 . . . 4 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → ∅ = 1o)
304, 29rexlimddv 2619 . . 3 ((𝜑𝑢𝐴) → ∅ = 1o)
31 1n0 6490 . . . . 5 1o ≠ ∅
3231nesymi 2413 . . . 4 ¬ ∅ = 1o
3332a1i 9 . . 3 ((𝜑𝑢𝐴) → ¬ ∅ = 1o)
3430, 33pm2.65da 662 . 2 (𝜑 → ¬ 𝑢𝐴)
3534eq0rdv 3495 1 (𝜑𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 835   = wceq 1364  wcel 2167  wral 2475  wrex 2476  c0 3450  ifcif 3561  cmpt 4094  ωcom 4626  ontowfo 5256  cfv 5258  1oc1o 6467  cdju 7103  inlcinl 7111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1st 6198  df-2nd 6199  df-1o 6474  df-dju 7104  df-inl 7113  df-inr 7114
This theorem is referenced by:  fodjuomnilemres  7214  fodjumkvlemres  7225
  Copyright terms: Public domain W3C validator