ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodju0 GIF version

Theorem fodju0 7111
Description: Lemma for fodjuomni 7113 and fodjumkv 7124. A condition which shows that 𝐴 is empty. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
Hypotheses
Ref Expression
fodjuf.fo (𝜑𝐹:𝑂onto→(𝐴𝐵))
fodjuf.p 𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
fodju0.1 (𝜑 → ∀𝑤𝑂 (𝑃𝑤) = 1o)
Assertion
Ref Expression
fodju0 (𝜑𝐴 = ∅)
Distinct variable groups:   𝜑,𝑦,𝑧   𝑦,𝑂,𝑧   𝑧,𝐴   𝑧,𝐵   𝑧,𝐹   𝑦,𝐴   𝑦,𝐹   𝑤,𝑂   𝑤,𝑃
Allowed substitution hints:   𝜑(𝑤)   𝐴(𝑤)   𝐵(𝑦,𝑤)   𝑃(𝑦,𝑧)   𝐹(𝑤)

Proof of Theorem fodju0
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fodjuf.fo . . . . 5 (𝜑𝐹:𝑂onto→(𝐴𝐵))
2 djulcl 7016 . . . . 5 (𝑢𝐴 → (inl‘𝑢) ∈ (𝐴𝐵))
3 foelrn 5721 . . . . 5 ((𝐹:𝑂onto→(𝐴𝐵) ∧ (inl‘𝑢) ∈ (𝐴𝐵)) → ∃𝑣𝑂 (inl‘𝑢) = (𝐹𝑣))
41, 2, 3syl2an 287 . . . 4 ((𝜑𝑢𝐴) → ∃𝑣𝑂 (inl‘𝑢) = (𝐹𝑣))
5 fodjuf.p . . . . . 6 𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
6 fveqeq2 5495 . . . . . . . 8 (𝑦 = 𝑣 → ((𝐹𝑦) = (inl‘𝑧) ↔ (𝐹𝑣) = (inl‘𝑧)))
76rexbidv 2467 . . . . . . 7 (𝑦 = 𝑣 → (∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧) ↔ ∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧)))
87ifbid 3541 . . . . . 6 (𝑦 = 𝑣 → if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o) = if(∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧), ∅, 1o))
9 simprl 521 . . . . . 6 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → 𝑣𝑂)
10 peano1 4571 . . . . . . . 8 ∅ ∈ ω
1110a1i 9 . . . . . . 7 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → ∅ ∈ ω)
12 1onn 6488 . . . . . . . 8 1o ∈ ω
1312a1i 9 . . . . . . 7 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → 1o ∈ ω)
141fodjuomnilemdc 7108 . . . . . . . 8 ((𝜑𝑣𝑂) → DECID𝑧𝐴 (𝐹𝑣) = (inl‘𝑧))
1514ad2ant2r 501 . . . . . . 7 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → DECID𝑧𝐴 (𝐹𝑣) = (inl‘𝑧))
1611, 13, 15ifcldcd 3555 . . . . . 6 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → if(∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧), ∅, 1o) ∈ ω)
175, 8, 9, 16fvmptd3 5579 . . . . 5 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → (𝑃𝑣) = if(∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧), ∅, 1o))
18 fveqeq2 5495 . . . . . 6 (𝑤 = 𝑣 → ((𝑃𝑤) = 1o ↔ (𝑃𝑣) = 1o))
19 fodju0.1 . . . . . . 7 (𝜑 → ∀𝑤𝑂 (𝑃𝑤) = 1o)
2019ad2antrr 480 . . . . . 6 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → ∀𝑤𝑂 (𝑃𝑤) = 1o)
2118, 20, 9rspcdva 2835 . . . . 5 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → (𝑃𝑣) = 1o)
22 simplr 520 . . . . . . 7 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → 𝑢𝐴)
23 simprr 522 . . . . . . . 8 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → (inl‘𝑢) = (𝐹𝑣))
2423eqcomd 2171 . . . . . . 7 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → (𝐹𝑣) = (inl‘𝑢))
25 fveq2 5486 . . . . . . . 8 (𝑧 = 𝑢 → (inl‘𝑧) = (inl‘𝑢))
2625rspceeqv 2848 . . . . . . 7 ((𝑢𝐴 ∧ (𝐹𝑣) = (inl‘𝑢)) → ∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧))
2722, 24, 26syl2anc 409 . . . . . 6 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → ∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧))
2827iftrued 3527 . . . . 5 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → if(∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧), ∅, 1o) = ∅)
2917, 21, 283eqtr3rd 2207 . . . 4 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → ∅ = 1o)
304, 29rexlimddv 2588 . . 3 ((𝜑𝑢𝐴) → ∅ = 1o)
31 1n0 6400 . . . . 5 1o ≠ ∅
3231nesymi 2382 . . . 4 ¬ ∅ = 1o
3332a1i 9 . . 3 ((𝜑𝑢𝐴) → ¬ ∅ = 1o)
3430, 33pm2.65da 651 . 2 (𝜑 → ¬ 𝑢𝐴)
3534eq0rdv 3453 1 (𝜑𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  DECID wdc 824   = wceq 1343  wcel 2136  wral 2444  wrex 2445  c0 3409  ifcif 3520  cmpt 4043  ωcom 4567  ontowfo 5186  cfv 5188  1oc1o 6377  cdju 7002  inlcinl 7010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109  df-1o 6384  df-dju 7003  df-inl 7012  df-inr 7013
This theorem is referenced by:  fodjuomnilemres  7112  fodjumkvlemres  7123
  Copyright terms: Public domain W3C validator