| Step | Hyp | Ref
| Expression |
| 1 | | fodjuf.fo |
. . . . 5
⊢ (𝜑 → 𝐹:𝑂–onto→(𝐴 ⊔ 𝐵)) |
| 2 | | djulcl 7117 |
. . . . 5
⊢ (𝑢 ∈ 𝐴 → (inl‘𝑢) ∈ (𝐴 ⊔ 𝐵)) |
| 3 | | foelrn 5799 |
. . . . 5
⊢ ((𝐹:𝑂–onto→(𝐴 ⊔ 𝐵) ∧ (inl‘𝑢) ∈ (𝐴 ⊔ 𝐵)) → ∃𝑣 ∈ 𝑂 (inl‘𝑢) = (𝐹‘𝑣)) |
| 4 | 1, 2, 3 | syl2an 289 |
. . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐴) → ∃𝑣 ∈ 𝑂 (inl‘𝑢) = (𝐹‘𝑣)) |
| 5 | | fodjuf.p |
. . . . . 6
⊢ 𝑃 = (𝑦 ∈ 𝑂 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) |
| 6 | | fveqeq2 5567 |
. . . . . . . 8
⊢ (𝑦 = 𝑣 → ((𝐹‘𝑦) = (inl‘𝑧) ↔ (𝐹‘𝑣) = (inl‘𝑧))) |
| 7 | 6 | rexbidv 2498 |
. . . . . . 7
⊢ (𝑦 = 𝑣 → (∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧) ↔ ∃𝑧 ∈ 𝐴 (𝐹‘𝑣) = (inl‘𝑧))) |
| 8 | 7 | ifbid 3582 |
. . . . . 6
⊢ (𝑦 = 𝑣 → if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o) = if(∃𝑧 ∈ 𝐴 (𝐹‘𝑣) = (inl‘𝑧), ∅, 1o)) |
| 9 | | simprl 529 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐴) ∧ (𝑣 ∈ 𝑂 ∧ (inl‘𝑢) = (𝐹‘𝑣))) → 𝑣 ∈ 𝑂) |
| 10 | | peano1 4630 |
. . . . . . . 8
⊢ ∅
∈ ω |
| 11 | 10 | a1i 9 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐴) ∧ (𝑣 ∈ 𝑂 ∧ (inl‘𝑢) = (𝐹‘𝑣))) → ∅ ∈
ω) |
| 12 | | 1onn 6578 |
. . . . . . . 8
⊢
1o ∈ ω |
| 13 | 12 | a1i 9 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐴) ∧ (𝑣 ∈ 𝑂 ∧ (inl‘𝑢) = (𝐹‘𝑣))) → 1o ∈
ω) |
| 14 | 1 | fodjuomnilemdc 7210 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑂) → DECID ∃𝑧 ∈ 𝐴 (𝐹‘𝑣) = (inl‘𝑧)) |
| 15 | 14 | ad2ant2r 509 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐴) ∧ (𝑣 ∈ 𝑂 ∧ (inl‘𝑢) = (𝐹‘𝑣))) → DECID ∃𝑧 ∈ 𝐴 (𝐹‘𝑣) = (inl‘𝑧)) |
| 16 | 11, 13, 15 | ifcldcd 3597 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐴) ∧ (𝑣 ∈ 𝑂 ∧ (inl‘𝑢) = (𝐹‘𝑣))) → if(∃𝑧 ∈ 𝐴 (𝐹‘𝑣) = (inl‘𝑧), ∅, 1o) ∈
ω) |
| 17 | 5, 8, 9, 16 | fvmptd3 5655 |
. . . . 5
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐴) ∧ (𝑣 ∈ 𝑂 ∧ (inl‘𝑢) = (𝐹‘𝑣))) → (𝑃‘𝑣) = if(∃𝑧 ∈ 𝐴 (𝐹‘𝑣) = (inl‘𝑧), ∅, 1o)) |
| 18 | | fveqeq2 5567 |
. . . . . 6
⊢ (𝑤 = 𝑣 → ((𝑃‘𝑤) = 1o ↔ (𝑃‘𝑣) = 1o)) |
| 19 | | fodju0.1 |
. . . . . . 7
⊢ (𝜑 → ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o) |
| 20 | 19 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐴) ∧ (𝑣 ∈ 𝑂 ∧ (inl‘𝑢) = (𝐹‘𝑣))) → ∀𝑤 ∈ 𝑂 (𝑃‘𝑤) = 1o) |
| 21 | 18, 20, 9 | rspcdva 2873 |
. . . . 5
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐴) ∧ (𝑣 ∈ 𝑂 ∧ (inl‘𝑢) = (𝐹‘𝑣))) → (𝑃‘𝑣) = 1o) |
| 22 | | simplr 528 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐴) ∧ (𝑣 ∈ 𝑂 ∧ (inl‘𝑢) = (𝐹‘𝑣))) → 𝑢 ∈ 𝐴) |
| 23 | | simprr 531 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐴) ∧ (𝑣 ∈ 𝑂 ∧ (inl‘𝑢) = (𝐹‘𝑣))) → (inl‘𝑢) = (𝐹‘𝑣)) |
| 24 | 23 | eqcomd 2202 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐴) ∧ (𝑣 ∈ 𝑂 ∧ (inl‘𝑢) = (𝐹‘𝑣))) → (𝐹‘𝑣) = (inl‘𝑢)) |
| 25 | | fveq2 5558 |
. . . . . . . 8
⊢ (𝑧 = 𝑢 → (inl‘𝑧) = (inl‘𝑢)) |
| 26 | 25 | rspceeqv 2886 |
. . . . . . 7
⊢ ((𝑢 ∈ 𝐴 ∧ (𝐹‘𝑣) = (inl‘𝑢)) → ∃𝑧 ∈ 𝐴 (𝐹‘𝑣) = (inl‘𝑧)) |
| 27 | 22, 24, 26 | syl2anc 411 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐴) ∧ (𝑣 ∈ 𝑂 ∧ (inl‘𝑢) = (𝐹‘𝑣))) → ∃𝑧 ∈ 𝐴 (𝐹‘𝑣) = (inl‘𝑧)) |
| 28 | 27 | iftrued 3568 |
. . . . 5
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐴) ∧ (𝑣 ∈ 𝑂 ∧ (inl‘𝑢) = (𝐹‘𝑣))) → if(∃𝑧 ∈ 𝐴 (𝐹‘𝑣) = (inl‘𝑧), ∅, 1o) =
∅) |
| 29 | 17, 21, 28 | 3eqtr3rd 2238 |
. . . 4
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐴) ∧ (𝑣 ∈ 𝑂 ∧ (inl‘𝑢) = (𝐹‘𝑣))) → ∅ =
1o) |
| 30 | 4, 29 | rexlimddv 2619 |
. . 3
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐴) → ∅ =
1o) |
| 31 | | 1n0 6490 |
. . . . 5
⊢
1o ≠ ∅ |
| 32 | 31 | nesymi 2413 |
. . . 4
⊢ ¬
∅ = 1o |
| 33 | 32 | a1i 9 |
. . 3
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐴) → ¬ ∅ =
1o) |
| 34 | 30, 33 | pm2.65da 662 |
. 2
⊢ (𝜑 → ¬ 𝑢 ∈ 𝐴) |
| 35 | 34 | eq0rdv 3495 |
1
⊢ (𝜑 → 𝐴 = ∅) |