ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodju0 GIF version

Theorem fodju0 7310
Description: Lemma for fodjuomni 7312 and fodjumkv 7323. A condition which shows that 𝐴 is empty. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
Hypotheses
Ref Expression
fodjuf.fo (𝜑𝐹:𝑂onto→(𝐴𝐵))
fodjuf.p 𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
fodju0.1 (𝜑 → ∀𝑤𝑂 (𝑃𝑤) = 1o)
Assertion
Ref Expression
fodju0 (𝜑𝐴 = ∅)
Distinct variable groups:   𝜑,𝑦,𝑧   𝑦,𝑂,𝑧   𝑧,𝐴   𝑧,𝐵   𝑧,𝐹   𝑦,𝐴   𝑦,𝐹   𝑤,𝑂   𝑤,𝑃
Allowed substitution hints:   𝜑(𝑤)   𝐴(𝑤)   𝐵(𝑦,𝑤)   𝑃(𝑦,𝑧)   𝐹(𝑤)

Proof of Theorem fodju0
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fodjuf.fo . . . . 5 (𝜑𝐹:𝑂onto→(𝐴𝐵))
2 djulcl 7214 . . . . 5 (𝑢𝐴 → (inl‘𝑢) ∈ (𝐴𝐵))
3 foelrn 5875 . . . . 5 ((𝐹:𝑂onto→(𝐴𝐵) ∧ (inl‘𝑢) ∈ (𝐴𝐵)) → ∃𝑣𝑂 (inl‘𝑢) = (𝐹𝑣))
41, 2, 3syl2an 289 . . . 4 ((𝜑𝑢𝐴) → ∃𝑣𝑂 (inl‘𝑢) = (𝐹𝑣))
5 fodjuf.p . . . . . 6 𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
6 fveqeq2 5635 . . . . . . . 8 (𝑦 = 𝑣 → ((𝐹𝑦) = (inl‘𝑧) ↔ (𝐹𝑣) = (inl‘𝑧)))
76rexbidv 2531 . . . . . . 7 (𝑦 = 𝑣 → (∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧) ↔ ∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧)))
87ifbid 3624 . . . . . 6 (𝑦 = 𝑣 → if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o) = if(∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧), ∅, 1o))
9 simprl 529 . . . . . 6 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → 𝑣𝑂)
10 peano1 4685 . . . . . . . 8 ∅ ∈ ω
1110a1i 9 . . . . . . 7 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → ∅ ∈ ω)
12 1onn 6664 . . . . . . . 8 1o ∈ ω
1312a1i 9 . . . . . . 7 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → 1o ∈ ω)
141fodjuomnilemdc 7307 . . . . . . . 8 ((𝜑𝑣𝑂) → DECID𝑧𝐴 (𝐹𝑣) = (inl‘𝑧))
1514ad2ant2r 509 . . . . . . 7 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → DECID𝑧𝐴 (𝐹𝑣) = (inl‘𝑧))
1611, 13, 15ifcldcd 3640 . . . . . 6 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → if(∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧), ∅, 1o) ∈ ω)
175, 8, 9, 16fvmptd3 5727 . . . . 5 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → (𝑃𝑣) = if(∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧), ∅, 1o))
18 fveqeq2 5635 . . . . . 6 (𝑤 = 𝑣 → ((𝑃𝑤) = 1o ↔ (𝑃𝑣) = 1o))
19 fodju0.1 . . . . . . 7 (𝜑 → ∀𝑤𝑂 (𝑃𝑤) = 1o)
2019ad2antrr 488 . . . . . 6 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → ∀𝑤𝑂 (𝑃𝑤) = 1o)
2118, 20, 9rspcdva 2912 . . . . 5 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → (𝑃𝑣) = 1o)
22 simplr 528 . . . . . . 7 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → 𝑢𝐴)
23 simprr 531 . . . . . . . 8 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → (inl‘𝑢) = (𝐹𝑣))
2423eqcomd 2235 . . . . . . 7 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → (𝐹𝑣) = (inl‘𝑢))
25 fveq2 5626 . . . . . . . 8 (𝑧 = 𝑢 → (inl‘𝑧) = (inl‘𝑢))
2625rspceeqv 2925 . . . . . . 7 ((𝑢𝐴 ∧ (𝐹𝑣) = (inl‘𝑢)) → ∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧))
2722, 24, 26syl2anc 411 . . . . . 6 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → ∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧))
2827iftrued 3609 . . . . 5 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → if(∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧), ∅, 1o) = ∅)
2917, 21, 283eqtr3rd 2271 . . . 4 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → ∅ = 1o)
304, 29rexlimddv 2653 . . 3 ((𝜑𝑢𝐴) → ∅ = 1o)
31 1n0 6576 . . . . 5 1o ≠ ∅
3231nesymi 2446 . . . 4 ¬ ∅ = 1o
3332a1i 9 . . 3 ((𝜑𝑢𝐴) → ¬ ∅ = 1o)
3430, 33pm2.65da 665 . 2 (𝜑 → ¬ 𝑢𝐴)
3534eq0rdv 3536 1 (𝜑𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 839   = wceq 1395  wcel 2200  wral 2508  wrex 2509  c0 3491  ifcif 3602  cmpt 4144  ωcom 4681  ontowfo 5315  cfv 5317  1oc1o 6553  cdju 7200  inlcinl 7208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1st 6284  df-2nd 6285  df-1o 6560  df-dju 7201  df-inl 7210  df-inr 7211
This theorem is referenced by:  fodjuomnilemres  7311  fodjumkvlemres  7322
  Copyright terms: Public domain W3C validator