ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodju0 GIF version

Theorem fodju0 6931
Description: Lemma for fodjuomni 6933 and fodjumkv 6945. A condition which shows that 𝐴 is empty. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
Hypotheses
Ref Expression
fodjuf.fo (𝜑𝐹:𝑂onto→(𝐴𝐵))
fodjuf.p 𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
fodju0.1 (𝜑 → ∀𝑤𝑂 (𝑃𝑤) = 1o)
Assertion
Ref Expression
fodju0 (𝜑𝐴 = ∅)
Distinct variable groups:   𝜑,𝑦,𝑧   𝑦,𝑂,𝑧   𝑧,𝐴   𝑧,𝐵   𝑧,𝐹   𝑦,𝐴   𝑦,𝐹   𝑤,𝑂   𝑤,𝑃
Allowed substitution hints:   𝜑(𝑤)   𝐴(𝑤)   𝐵(𝑦,𝑤)   𝑃(𝑦,𝑧)   𝐹(𝑤)

Proof of Theorem fodju0
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fodjuf.fo . . . . 5 (𝜑𝐹:𝑂onto→(𝐴𝐵))
2 djulcl 6851 . . . . 5 (𝑢𝐴 → (inl‘𝑢) ∈ (𝐴𝐵))
3 foelrn 5586 . . . . 5 ((𝐹:𝑂onto→(𝐴𝐵) ∧ (inl‘𝑢) ∈ (𝐴𝐵)) → ∃𝑣𝑂 (inl‘𝑢) = (𝐹𝑣))
41, 2, 3syl2an 285 . . . 4 ((𝜑𝑢𝐴) → ∃𝑣𝑂 (inl‘𝑢) = (𝐹𝑣))
5 fodjuf.p . . . . . 6 𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
6 fveqeq2 5362 . . . . . . . 8 (𝑦 = 𝑣 → ((𝐹𝑦) = (inl‘𝑧) ↔ (𝐹𝑣) = (inl‘𝑧)))
76rexbidv 2397 . . . . . . 7 (𝑦 = 𝑣 → (∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧) ↔ ∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧)))
87ifbid 3440 . . . . . 6 (𝑦 = 𝑣 → if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o) = if(∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧), ∅, 1o))
9 simprl 501 . . . . . 6 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → 𝑣𝑂)
10 peano1 4446 . . . . . . . 8 ∅ ∈ ω
1110a1i 9 . . . . . . 7 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → ∅ ∈ ω)
12 1onn 6346 . . . . . . . 8 1o ∈ ω
1312a1i 9 . . . . . . 7 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → 1o ∈ ω)
141fodjuomnilemdc 6928 . . . . . . . 8 ((𝜑𝑣𝑂) → DECID𝑧𝐴 (𝐹𝑣) = (inl‘𝑧))
1514ad2ant2r 496 . . . . . . 7 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → DECID𝑧𝐴 (𝐹𝑣) = (inl‘𝑧))
1611, 13, 15ifcldcd 3454 . . . . . 6 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → if(∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧), ∅, 1o) ∈ ω)
175, 8, 9, 16fvmptd3 5446 . . . . 5 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → (𝑃𝑣) = if(∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧), ∅, 1o))
18 fveqeq2 5362 . . . . . 6 (𝑤 = 𝑣 → ((𝑃𝑤) = 1o ↔ (𝑃𝑣) = 1o))
19 fodju0.1 . . . . . . 7 (𝜑 → ∀𝑤𝑂 (𝑃𝑤) = 1o)
2019ad2antrr 475 . . . . . 6 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → ∀𝑤𝑂 (𝑃𝑤) = 1o)
2118, 20, 9rspcdva 2749 . . . . 5 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → (𝑃𝑣) = 1o)
22 simplr 500 . . . . . . 7 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → 𝑢𝐴)
23 simprr 502 . . . . . . . 8 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → (inl‘𝑢) = (𝐹𝑣))
2423eqcomd 2105 . . . . . . 7 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → (𝐹𝑣) = (inl‘𝑢))
25 fveq2 5353 . . . . . . . 8 (𝑧 = 𝑢 → (inl‘𝑧) = (inl‘𝑢))
2625rspceeqv 2761 . . . . . . 7 ((𝑢𝐴 ∧ (𝐹𝑣) = (inl‘𝑢)) → ∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧))
2722, 24, 26syl2anc 406 . . . . . 6 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → ∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧))
2827iftrued 3428 . . . . 5 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → if(∃𝑧𝐴 (𝐹𝑣) = (inl‘𝑧), ∅, 1o) = ∅)
2917, 21, 283eqtr3rd 2141 . . . 4 (((𝜑𝑢𝐴) ∧ (𝑣𝑂 ∧ (inl‘𝑢) = (𝐹𝑣))) → ∅ = 1o)
304, 29rexlimddv 2513 . . 3 ((𝜑𝑢𝐴) → ∅ = 1o)
31 1n0 6259 . . . . 5 1o ≠ ∅
3231nesymi 2313 . . . 4 ¬ ∅ = 1o
3332a1i 9 . . 3 ((𝜑𝑢𝐴) → ¬ ∅ = 1o)
3430, 33pm2.65da 628 . 2 (𝜑 → ¬ 𝑢𝐴)
3534eq0rdv 3354 1 (𝜑𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  DECID wdc 786   = wceq 1299  wcel 1448  wral 2375  wrex 2376  c0 3310  ifcif 3421  cmpt 3929  ωcom 4442  ontowfo 5057  cfv 5059  1oc1o 6236  cdju 6837  inlcinl 6845
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-1st 5969  df-2nd 5970  df-1o 6243  df-dju 6838  df-inl 6847  df-inr 6848
This theorem is referenced by:  fodjuomnilemres  6932  fodjumkvlemres  6944
  Copyright terms: Public domain W3C validator