| Step | Hyp | Ref
| Expression |
| 1 | | 1n0 6490 |
. . . . 5
⊢
1o ≠ ∅ |
| 2 | 1 | nesymi 2413 |
. . . 4
⊢ ¬
∅ = 1o |
| 3 | | simplr 528 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ∞) ∧
(𝑄‘𝑝) = ∅) → 𝑝 ∈
ℕ∞) |
| 4 | | nninff 7188 |
. . . . . . . . . . . 12
⊢ (𝑝 ∈
ℕ∞ → 𝑝:ω⟶2o) |
| 5 | 4 | ffnd 5408 |
. . . . . . . . . . 11
⊢ (𝑝 ∈
ℕ∞ → 𝑝 Fn ω) |
| 6 | 3, 5 | syl 14 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ∞) ∧
(𝑄‘𝑝) = ∅) → 𝑝 Fn ω) |
| 7 | | nninfall.q |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑄 ∈ (2o
↑𝑚 ℕ∞)) |
| 8 | 7 | ad2antrr 488 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ∞) ∧
(𝑄‘𝑝) = ∅) → 𝑄 ∈ (2o
↑𝑚 ℕ∞)) |
| 9 | | nninfall.inf |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑄‘(𝑥 ∈ ω ↦ 1o)) =
1o) |
| 10 | 9 | ad2antrr 488 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ∞) ∧
(𝑄‘𝑝) = ∅) → (𝑄‘(𝑥 ∈ ω ↦ 1o)) =
1o) |
| 11 | | nninfall.n |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑛 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) =
1o) |
| 12 | 11 | ad2antrr 488 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ∞) ∧
(𝑄‘𝑝) = ∅) → ∀𝑛 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) =
1o) |
| 13 | | simpr 110 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ∞) ∧
(𝑄‘𝑝) = ∅) → (𝑄‘𝑝) = ∅) |
| 14 | 8, 10, 12, 3, 13 | nninfalllem1 15652 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ∞) ∧
(𝑄‘𝑝) = ∅) → ∀𝑛 ∈ ω (𝑝‘𝑛) = 1o) |
| 15 | | eqeq1 2203 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = (𝑝‘𝑛) → (𝑎 = 1o ↔ (𝑝‘𝑛) = 1o)) |
| 16 | 15 | ralrn 5700 |
. . . . . . . . . . . . . 14
⊢ (𝑝 Fn ω →
(∀𝑎 ∈ ran 𝑝 𝑎 = 1o ↔ ∀𝑛 ∈ ω (𝑝‘𝑛) = 1o)) |
| 17 | 3, 5, 16 | 3syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ∞) ∧
(𝑄‘𝑝) = ∅) → (∀𝑎 ∈ ran 𝑝 𝑎 = 1o ↔ ∀𝑛 ∈ ω (𝑝‘𝑛) = 1o)) |
| 18 | 14, 17 | mpbird 167 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ∞) ∧
(𝑄‘𝑝) = ∅) → ∀𝑎 ∈ ran 𝑝 𝑎 = 1o) |
| 19 | | peano1 4630 |
. . . . . . . . . . . . . . . 16
⊢ ∅
∈ ω |
| 20 | | elex2 2779 |
. . . . . . . . . . . . . . . 16
⊢ (∅
∈ ω → ∃𝑏 𝑏 ∈ ω) |
| 21 | 19, 20 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
∃𝑏 𝑏 ∈ ω |
| 22 | | fdm 5413 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝:ω⟶2o
→ dom 𝑝 =
ω) |
| 23 | 22 | eleq2d 2266 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝:ω⟶2o
→ (𝑏 ∈ dom 𝑝 ↔ 𝑏 ∈ ω)) |
| 24 | 23 | exbidv 1839 |
. . . . . . . . . . . . . . 15
⊢ (𝑝:ω⟶2o
→ (∃𝑏 𝑏 ∈ dom 𝑝 ↔ ∃𝑏 𝑏 ∈ ω)) |
| 25 | 21, 24 | mpbiri 168 |
. . . . . . . . . . . . . 14
⊢ (𝑝:ω⟶2o
→ ∃𝑏 𝑏 ∈ dom 𝑝) |
| 26 | | dmmrnm 4885 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑏 𝑏 ∈ dom 𝑝 ↔ ∃𝑎 𝑎 ∈ ran 𝑝) |
| 27 | | eqsnm 3785 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑎 𝑎 ∈ ran 𝑝 → (ran 𝑝 = {1o} ↔ ∀𝑎 ∈ ran 𝑝 𝑎 = 1o)) |
| 28 | 26, 27 | sylbi 121 |
. . . . . . . . . . . . . 14
⊢
(∃𝑏 𝑏 ∈ dom 𝑝 → (ran 𝑝 = {1o} ↔ ∀𝑎 ∈ ran 𝑝 𝑎 = 1o)) |
| 29 | 25, 28 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝑝:ω⟶2o
→ (ran 𝑝 =
{1o} ↔ ∀𝑎 ∈ ran 𝑝 𝑎 = 1o)) |
| 30 | 3, 4, 29 | 3syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ∞) ∧
(𝑄‘𝑝) = ∅) → (ran 𝑝 = {1o} ↔ ∀𝑎 ∈ ran 𝑝 𝑎 = 1o)) |
| 31 | 18, 30 | mpbird 167 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ∞) ∧
(𝑄‘𝑝) = ∅) → ran 𝑝 = {1o}) |
| 32 | | eqimss 3237 |
. . . . . . . . . . 11
⊢ (ran
𝑝 = {1o} →
ran 𝑝 ⊆
{1o}) |
| 33 | 31, 32 | syl 14 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ∞) ∧
(𝑄‘𝑝) = ∅) → ran 𝑝 ⊆ {1o}) |
| 34 | | df-f 5262 |
. . . . . . . . . 10
⊢ (𝑝:ω⟶{1o}
↔ (𝑝 Fn ω ∧
ran 𝑝 ⊆
{1o})) |
| 35 | 6, 33, 34 | sylanbrc 417 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ∞) ∧
(𝑄‘𝑝) = ∅) → 𝑝:ω⟶{1o}) |
| 36 | | 1onn 6578 |
. . . . . . . . . 10
⊢
1o ∈ ω |
| 37 | | fconst2g 5777 |
. . . . . . . . . 10
⊢
(1o ∈ ω → (𝑝:ω⟶{1o} ↔ 𝑝 = (ω ×
{1o}))) |
| 38 | 36, 37 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝑝:ω⟶{1o}
↔ 𝑝 = (ω ×
{1o})) |
| 39 | 35, 38 | sylib 122 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ∞) ∧
(𝑄‘𝑝) = ∅) → 𝑝 = (ω ×
{1o})) |
| 40 | | fconstmpt 4710 |
. . . . . . . 8
⊢ (ω
× {1o}) = (𝑥 ∈ ω ↦
1o) |
| 41 | 39, 40 | eqtrdi 2245 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ∞) ∧
(𝑄‘𝑝) = ∅) → 𝑝 = (𝑥 ∈ ω ↦
1o)) |
| 42 | 41 | fveq2d 5562 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ∞) ∧
(𝑄‘𝑝) = ∅) → (𝑄‘𝑝) = (𝑄‘(𝑥 ∈ ω ↦
1o))) |
| 43 | 42, 13, 10 | 3eqtr3d 2237 |
. . . . 5
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ∞) ∧
(𝑄‘𝑝) = ∅) → ∅ =
1o) |
| 44 | 43 | ex 115 |
. . . 4
⊢ ((𝜑 ∧ 𝑝 ∈ ℕ∞) →
((𝑄‘𝑝) = ∅ → ∅ =
1o)) |
| 45 | 2, 44 | mtoi 665 |
. . 3
⊢ ((𝜑 ∧ 𝑝 ∈ ℕ∞) →
¬ (𝑄‘𝑝) = ∅) |
| 46 | | elmapi 6729 |
. . . . . . 7
⊢ (𝑄 ∈ (2o
↑𝑚 ℕ∞) → 𝑄:ℕ∞⟶2o) |
| 47 | 7, 46 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑄:ℕ∞⟶2o) |
| 48 | 47 | ffvelcdmda 5697 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ ℕ∞) →
(𝑄‘𝑝) ∈ 2o) |
| 49 | | elpri 3645 |
. . . . . 6
⊢ ((𝑄‘𝑝) ∈ {∅, 1o} →
((𝑄‘𝑝) = ∅ ∨ (𝑄‘𝑝) = 1o)) |
| 50 | | df2o3 6488 |
. . . . . 6
⊢
2o = {∅, 1o} |
| 51 | 49, 50 | eleq2s 2291 |
. . . . 5
⊢ ((𝑄‘𝑝) ∈ 2o → ((𝑄‘𝑝) = ∅ ∨ (𝑄‘𝑝) = 1o)) |
| 52 | 48, 51 | syl 14 |
. . . 4
⊢ ((𝜑 ∧ 𝑝 ∈ ℕ∞) →
((𝑄‘𝑝) = ∅ ∨ (𝑄‘𝑝) = 1o)) |
| 53 | 52 | orcomd 730 |
. . 3
⊢ ((𝜑 ∧ 𝑝 ∈ ℕ∞) →
((𝑄‘𝑝) = 1o ∨ (𝑄‘𝑝) = ∅)) |
| 54 | 45, 53 | ecased 1360 |
. 2
⊢ ((𝜑 ∧ 𝑝 ∈ ℕ∞) →
(𝑄‘𝑝) = 1o) |
| 55 | 54 | ralrimiva 2570 |
1
⊢ (𝜑 → ∀𝑝 ∈ ℕ∞ (𝑄‘𝑝) = 1o) |