Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfall GIF version

Theorem nninfall 15653
Description: Given a decidable predicate on , showing it holds for natural numbers and the point at infinity suffices to show it holds everywhere. The sense in which 𝑄 is a decidable predicate is that it assigns a value of either or 1o (which can be thought of as false and true) to every element of . Lemma 3.5 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 1-Aug-2022.)
Hypotheses
Ref Expression
nninfall.q (𝜑𝑄 ∈ (2o𝑚))
nninfall.inf (𝜑 → (𝑄‘(𝑥 ∈ ω ↦ 1o)) = 1o)
nninfall.n (𝜑 → ∀𝑛 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o)
Assertion
Ref Expression
nninfall (𝜑 → ∀𝑝 ∈ ℕ (𝑄𝑝) = 1o)
Distinct variable groups:   𝑄,𝑛,𝑖   𝑛,𝑝,𝑖,𝜑
Allowed substitution hints:   𝜑(𝑥)   𝑄(𝑥,𝑝)

Proof of Theorem nninfall
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1n0 6490 . . . . 5 1o ≠ ∅
21nesymi 2413 . . . 4 ¬ ∅ = 1o
3 simplr 528 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → 𝑝 ∈ ℕ)
4 nninff 7188 . . . . . . . . . . . 12 (𝑝 ∈ ℕ𝑝:ω⟶2o)
54ffnd 5408 . . . . . . . . . . 11 (𝑝 ∈ ℕ𝑝 Fn ω)
63, 5syl 14 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → 𝑝 Fn ω)
7 nninfall.q . . . . . . . . . . . . . . 15 (𝜑𝑄 ∈ (2o𝑚))
87ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → 𝑄 ∈ (2o𝑚))
9 nninfall.inf . . . . . . . . . . . . . . 15 (𝜑 → (𝑄‘(𝑥 ∈ ω ↦ 1o)) = 1o)
109ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → (𝑄‘(𝑥 ∈ ω ↦ 1o)) = 1o)
11 nninfall.n . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑛 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o)
1211ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → ∀𝑛 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o)
13 simpr 110 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → (𝑄𝑝) = ∅)
148, 10, 12, 3, 13nninfalllem1 15652 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → ∀𝑛 ∈ ω (𝑝𝑛) = 1o)
15 eqeq1 2203 . . . . . . . . . . . . . . 15 (𝑎 = (𝑝𝑛) → (𝑎 = 1o ↔ (𝑝𝑛) = 1o))
1615ralrn 5700 . . . . . . . . . . . . . 14 (𝑝 Fn ω → (∀𝑎 ∈ ran 𝑝 𝑎 = 1o ↔ ∀𝑛 ∈ ω (𝑝𝑛) = 1o))
173, 5, 163syl 17 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → (∀𝑎 ∈ ran 𝑝 𝑎 = 1o ↔ ∀𝑛 ∈ ω (𝑝𝑛) = 1o))
1814, 17mpbird 167 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → ∀𝑎 ∈ ran 𝑝 𝑎 = 1o)
19 peano1 4630 . . . . . . . . . . . . . . . 16 ∅ ∈ ω
20 elex2 2779 . . . . . . . . . . . . . . . 16 (∅ ∈ ω → ∃𝑏 𝑏 ∈ ω)
2119, 20ax-mp 5 . . . . . . . . . . . . . . 15 𝑏 𝑏 ∈ ω
22 fdm 5413 . . . . . . . . . . . . . . . . 17 (𝑝:ω⟶2o → dom 𝑝 = ω)
2322eleq2d 2266 . . . . . . . . . . . . . . . 16 (𝑝:ω⟶2o → (𝑏 ∈ dom 𝑝𝑏 ∈ ω))
2423exbidv 1839 . . . . . . . . . . . . . . 15 (𝑝:ω⟶2o → (∃𝑏 𝑏 ∈ dom 𝑝 ↔ ∃𝑏 𝑏 ∈ ω))
2521, 24mpbiri 168 . . . . . . . . . . . . . 14 (𝑝:ω⟶2o → ∃𝑏 𝑏 ∈ dom 𝑝)
26 dmmrnm 4885 . . . . . . . . . . . . . . 15 (∃𝑏 𝑏 ∈ dom 𝑝 ↔ ∃𝑎 𝑎 ∈ ran 𝑝)
27 eqsnm 3785 . . . . . . . . . . . . . . 15 (∃𝑎 𝑎 ∈ ran 𝑝 → (ran 𝑝 = {1o} ↔ ∀𝑎 ∈ ran 𝑝 𝑎 = 1o))
2826, 27sylbi 121 . . . . . . . . . . . . . 14 (∃𝑏 𝑏 ∈ dom 𝑝 → (ran 𝑝 = {1o} ↔ ∀𝑎 ∈ ran 𝑝 𝑎 = 1o))
2925, 28syl 14 . . . . . . . . . . . . 13 (𝑝:ω⟶2o → (ran 𝑝 = {1o} ↔ ∀𝑎 ∈ ran 𝑝 𝑎 = 1o))
303, 4, 293syl 17 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → (ran 𝑝 = {1o} ↔ ∀𝑎 ∈ ran 𝑝 𝑎 = 1o))
3118, 30mpbird 167 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → ran 𝑝 = {1o})
32 eqimss 3237 . . . . . . . . . . 11 (ran 𝑝 = {1o} → ran 𝑝 ⊆ {1o})
3331, 32syl 14 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → ran 𝑝 ⊆ {1o})
34 df-f 5262 . . . . . . . . . 10 (𝑝:ω⟶{1o} ↔ (𝑝 Fn ω ∧ ran 𝑝 ⊆ {1o}))
356, 33, 34sylanbrc 417 . . . . . . . . 9 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → 𝑝:ω⟶{1o})
36 1onn 6578 . . . . . . . . . 10 1o ∈ ω
37 fconst2g 5777 . . . . . . . . . 10 (1o ∈ ω → (𝑝:ω⟶{1o} ↔ 𝑝 = (ω × {1o})))
3836, 37ax-mp 5 . . . . . . . . 9 (𝑝:ω⟶{1o} ↔ 𝑝 = (ω × {1o}))
3935, 38sylib 122 . . . . . . . 8 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → 𝑝 = (ω × {1o}))
40 fconstmpt 4710 . . . . . . . 8 (ω × {1o}) = (𝑥 ∈ ω ↦ 1o)
4139, 40eqtrdi 2245 . . . . . . 7 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → 𝑝 = (𝑥 ∈ ω ↦ 1o))
4241fveq2d 5562 . . . . . 6 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → (𝑄𝑝) = (𝑄‘(𝑥 ∈ ω ↦ 1o)))
4342, 13, 103eqtr3d 2237 . . . . 5 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → ∅ = 1o)
4443ex 115 . . . 4 ((𝜑𝑝 ∈ ℕ) → ((𝑄𝑝) = ∅ → ∅ = 1o))
452, 44mtoi 665 . . 3 ((𝜑𝑝 ∈ ℕ) → ¬ (𝑄𝑝) = ∅)
46 elmapi 6729 . . . . . . 7 (𝑄 ∈ (2o𝑚) → 𝑄:ℕ⟶2o)
477, 46syl 14 . . . . . 6 (𝜑𝑄:ℕ⟶2o)
4847ffvelcdmda 5697 . . . . 5 ((𝜑𝑝 ∈ ℕ) → (𝑄𝑝) ∈ 2o)
49 elpri 3645 . . . . . 6 ((𝑄𝑝) ∈ {∅, 1o} → ((𝑄𝑝) = ∅ ∨ (𝑄𝑝) = 1o))
50 df2o3 6488 . . . . . 6 2o = {∅, 1o}
5149, 50eleq2s 2291 . . . . 5 ((𝑄𝑝) ∈ 2o → ((𝑄𝑝) = ∅ ∨ (𝑄𝑝) = 1o))
5248, 51syl 14 . . . 4 ((𝜑𝑝 ∈ ℕ) → ((𝑄𝑝) = ∅ ∨ (𝑄𝑝) = 1o))
5352orcomd 730 . . 3 ((𝜑𝑝 ∈ ℕ) → ((𝑄𝑝) = 1o ∨ (𝑄𝑝) = ∅))
5445, 53ecased 1360 . 2 ((𝜑𝑝 ∈ ℕ) → (𝑄𝑝) = 1o)
5554ralrimiva 2570 1 (𝜑 → ∀𝑝 ∈ ℕ (𝑄𝑝) = 1o)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wex 1506  wcel 2167  wral 2475  wss 3157  c0 3450  ifcif 3561  {csn 3622  {cpr 3623  cmpt 4094  ωcom 4626   × cxp 4661  dom cdm 4663  ran crn 4664   Fn wfn 5253  wf 5254  cfv 5258  (class class class)co 5922  1oc1o 6467  2oc2o 6468  𝑚 cmap 6707  xnninf 7185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1o 6474  df-2o 6475  df-map 6709  df-nninf 7186
This theorem is referenced by:  nninfsel  15661  nninffeq  15664
  Copyright terms: Public domain W3C validator