Mathbox for Jim Kingdon < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfall GIF version

Theorem nninfall 13193
 Description: Given a decidable predicate on ℕ∞, showing it holds for natural numbers and the point at infinity suffices to show it holds everywhere. The sense in which 𝑄 is a decidable predicate is that it assigns a value of either ∅ or 1o (which can be thought of as false and true) to every element of ℕ∞. Lemma 3.5 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 1-Aug-2022.)
Hypotheses
Ref Expression
nninfall.q (𝜑𝑄 ∈ (2o𝑚))
nninfall.inf (𝜑 → (𝑄‘(𝑥 ∈ ω ↦ 1o)) = 1o)
nninfall.n (𝜑 → ∀𝑛 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o)
Assertion
Ref Expression
nninfall (𝜑 → ∀𝑝 ∈ ℕ (𝑄𝑝) = 1o)
Distinct variable groups:   𝑄,𝑛,𝑖   𝑛,𝑝,𝑖,𝜑
Allowed substitution hints:   𝜑(𝑥)   𝑄(𝑥,𝑝)

Proof of Theorem nninfall
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1n0 6322 . . . . 5 1o ≠ ∅
21nesymi 2352 . . . 4 ¬ ∅ = 1o
3 simplr 519 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → 𝑝 ∈ ℕ)
4 nninff 13187 . . . . . . . . . . . 12 (𝑝 ∈ ℕ𝑝:ω⟶2o)
54ffnd 5268 . . . . . . . . . . 11 (𝑝 ∈ ℕ𝑝 Fn ω)
63, 5syl 14 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → 𝑝 Fn ω)
7 nninfall.q . . . . . . . . . . . . . . 15 (𝜑𝑄 ∈ (2o𝑚))
87ad2antrr 479 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → 𝑄 ∈ (2o𝑚))
9 nninfall.inf . . . . . . . . . . . . . . 15 (𝜑 → (𝑄‘(𝑥 ∈ ω ↦ 1o)) = 1o)
109ad2antrr 479 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → (𝑄‘(𝑥 ∈ ω ↦ 1o)) = 1o)
11 nninfall.n . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑛 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o)
1211ad2antrr 479 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → ∀𝑛 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o)
13 simpr 109 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → (𝑄𝑝) = ∅)
148, 10, 12, 3, 13nninfalllem1 13192 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → ∀𝑛 ∈ ω (𝑝𝑛) = 1o)
15 eqeq1 2144 . . . . . . . . . . . . . . 15 (𝑎 = (𝑝𝑛) → (𝑎 = 1o ↔ (𝑝𝑛) = 1o))
1615ralrn 5551 . . . . . . . . . . . . . 14 (𝑝 Fn ω → (∀𝑎 ∈ ran 𝑝 𝑎 = 1o ↔ ∀𝑛 ∈ ω (𝑝𝑛) = 1o))
173, 5, 163syl 17 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → (∀𝑎 ∈ ran 𝑝 𝑎 = 1o ↔ ∀𝑛 ∈ ω (𝑝𝑛) = 1o))
1814, 17mpbird 166 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → ∀𝑎 ∈ ran 𝑝 𝑎 = 1o)
19 peano1 4503 . . . . . . . . . . . . . . . 16 ∅ ∈ ω
20 elex2 2697 . . . . . . . . . . . . . . . 16 (∅ ∈ ω → ∃𝑏 𝑏 ∈ ω)
2119, 20ax-mp 5 . . . . . . . . . . . . . . 15 𝑏 𝑏 ∈ ω
22 fdm 5273 . . . . . . . . . . . . . . . . 17 (𝑝:ω⟶2o → dom 𝑝 = ω)
2322eleq2d 2207 . . . . . . . . . . . . . . . 16 (𝑝:ω⟶2o → (𝑏 ∈ dom 𝑝𝑏 ∈ ω))
2423exbidv 1797 . . . . . . . . . . . . . . 15 (𝑝:ω⟶2o → (∃𝑏 𝑏 ∈ dom 𝑝 ↔ ∃𝑏 𝑏 ∈ ω))
2521, 24mpbiri 167 . . . . . . . . . . . . . 14 (𝑝:ω⟶2o → ∃𝑏 𝑏 ∈ dom 𝑝)
26 dmmrnm 4753 . . . . . . . . . . . . . . 15 (∃𝑏 𝑏 ∈ dom 𝑝 ↔ ∃𝑎 𝑎 ∈ ran 𝑝)
27 eqsnm 3677 . . . . . . . . . . . . . . 15 (∃𝑎 𝑎 ∈ ran 𝑝 → (ran 𝑝 = {1o} ↔ ∀𝑎 ∈ ran 𝑝 𝑎 = 1o))
2826, 27sylbi 120 . . . . . . . . . . . . . 14 (∃𝑏 𝑏 ∈ dom 𝑝 → (ran 𝑝 = {1o} ↔ ∀𝑎 ∈ ran 𝑝 𝑎 = 1o))
2925, 28syl 14 . . . . . . . . . . . . 13 (𝑝:ω⟶2o → (ran 𝑝 = {1o} ↔ ∀𝑎 ∈ ran 𝑝 𝑎 = 1o))
303, 4, 293syl 17 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → (ran 𝑝 = {1o} ↔ ∀𝑎 ∈ ran 𝑝 𝑎 = 1o))
3118, 30mpbird 166 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → ran 𝑝 = {1o})
32 eqimss 3146 . . . . . . . . . . 11 (ran 𝑝 = {1o} → ran 𝑝 ⊆ {1o})
3331, 32syl 14 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → ran 𝑝 ⊆ {1o})
34 df-f 5122 . . . . . . . . . 10 (𝑝:ω⟶{1o} ↔ (𝑝 Fn ω ∧ ran 𝑝 ⊆ {1o}))
356, 33, 34sylanbrc 413 . . . . . . . . 9 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → 𝑝:ω⟶{1o})
36 1onn 6409 . . . . . . . . . 10 1o ∈ ω
37 fconst2g 5628 . . . . . . . . . 10 (1o ∈ ω → (𝑝:ω⟶{1o} ↔ 𝑝 = (ω × {1o})))
3836, 37ax-mp 5 . . . . . . . . 9 (𝑝:ω⟶{1o} ↔ 𝑝 = (ω × {1o}))
3935, 38sylib 121 . . . . . . . 8 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → 𝑝 = (ω × {1o}))
40 fconstmpt 4581 . . . . . . . 8 (ω × {1o}) = (𝑥 ∈ ω ↦ 1o)
4139, 40syl6eq 2186 . . . . . . 7 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → 𝑝 = (𝑥 ∈ ω ↦ 1o))
4241fveq2d 5418 . . . . . 6 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → (𝑄𝑝) = (𝑄‘(𝑥 ∈ ω ↦ 1o)))
4342, 13, 103eqtr3d 2178 . . . . 5 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → ∅ = 1o)
4443ex 114 . . . 4 ((𝜑𝑝 ∈ ℕ) → ((𝑄𝑝) = ∅ → ∅ = 1o))
452, 44mtoi 653 . . 3 ((𝜑𝑝 ∈ ℕ) → ¬ (𝑄𝑝) = ∅)
46 elmapi 6557 . . . . . . 7 (𝑄 ∈ (2o𝑚) → 𝑄:ℕ⟶2o)
477, 46syl 14 . . . . . 6 (𝜑𝑄:ℕ⟶2o)
4847ffvelrnda 5548 . . . . 5 ((𝜑𝑝 ∈ ℕ) → (𝑄𝑝) ∈ 2o)
49 elpri 3545 . . . . . 6 ((𝑄𝑝) ∈ {∅, 1o} → ((𝑄𝑝) = ∅ ∨ (𝑄𝑝) = 1o))
50 df2o3 6320 . . . . . 6 2o = {∅, 1o}
5149, 50eleq2s 2232 . . . . 5 ((𝑄𝑝) ∈ 2o → ((𝑄𝑝) = ∅ ∨ (𝑄𝑝) = 1o))
5248, 51syl 14 . . . 4 ((𝜑𝑝 ∈ ℕ) → ((𝑄𝑝) = ∅ ∨ (𝑄𝑝) = 1o))
5352orcomd 718 . . 3 ((𝜑𝑝 ∈ ℕ) → ((𝑄𝑝) = 1o ∨ (𝑄𝑝) = ∅))
5445, 53ecased 1327 . 2 ((𝜑𝑝 ∈ ℕ) → (𝑄𝑝) = 1o)
5554ralrimiva 2503 1 (𝜑 → ∀𝑝 ∈ ℕ (𝑄𝑝) = 1o)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∨ wo 697   = wceq 1331  ∃wex 1468   ∈ wcel 1480  ∀wral 2414   ⊆ wss 3066  ∅c0 3358  ifcif 3469  {csn 3522  {cpr 3523   ↦ cmpt 3984  ωcom 4499   × cxp 4532  dom cdm 4534  ran crn 4535   Fn wfn 5113  ⟶wf 5114  ‘cfv 5118  (class class class)co 5767  1oc1o 6299  2oc2o 6300   ↑𝑚 cmap 6535  ℕ∞xnninf 6998 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497 This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1o 6306  df-2o 6307  df-map 6537  df-nninf 7000 This theorem is referenced by:  nninfsel  13202  nninffeq  13205
 Copyright terms: Public domain W3C validator