Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfall GIF version

Theorem nninfall 13379
Description: Given a decidable predicate on , showing it holds for natural numbers and the point at infinity suffices to show it holds everywhere. The sense in which 𝑄 is a decidable predicate is that it assigns a value of either or 1o (which can be thought of as false and true) to every element of . Lemma 3.5 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 1-Aug-2022.)
Hypotheses
Ref Expression
nninfall.q (𝜑𝑄 ∈ (2o𝑚))
nninfall.inf (𝜑 → (𝑄‘(𝑥 ∈ ω ↦ 1o)) = 1o)
nninfall.n (𝜑 → ∀𝑛 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o)
Assertion
Ref Expression
nninfall (𝜑 → ∀𝑝 ∈ ℕ (𝑄𝑝) = 1o)
Distinct variable groups:   𝑄,𝑛,𝑖   𝑛,𝑝,𝑖,𝜑
Allowed substitution hints:   𝜑(𝑥)   𝑄(𝑥,𝑝)

Proof of Theorem nninfall
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1n0 6337 . . . . 5 1o ≠ ∅
21nesymi 2355 . . . 4 ¬ ∅ = 1o
3 simplr 520 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → 𝑝 ∈ ℕ)
4 nninff 13373 . . . . . . . . . . . 12 (𝑝 ∈ ℕ𝑝:ω⟶2o)
54ffnd 5281 . . . . . . . . . . 11 (𝑝 ∈ ℕ𝑝 Fn ω)
63, 5syl 14 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → 𝑝 Fn ω)
7 nninfall.q . . . . . . . . . . . . . . 15 (𝜑𝑄 ∈ (2o𝑚))
87ad2antrr 480 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → 𝑄 ∈ (2o𝑚))
9 nninfall.inf . . . . . . . . . . . . . . 15 (𝜑 → (𝑄‘(𝑥 ∈ ω ↦ 1o)) = 1o)
109ad2antrr 480 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → (𝑄‘(𝑥 ∈ ω ↦ 1o)) = 1o)
11 nninfall.n . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑛 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o)
1211ad2antrr 480 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → ∀𝑛 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o)
13 simpr 109 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → (𝑄𝑝) = ∅)
148, 10, 12, 3, 13nninfalllem1 13378 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → ∀𝑛 ∈ ω (𝑝𝑛) = 1o)
15 eqeq1 2147 . . . . . . . . . . . . . . 15 (𝑎 = (𝑝𝑛) → (𝑎 = 1o ↔ (𝑝𝑛) = 1o))
1615ralrn 5566 . . . . . . . . . . . . . 14 (𝑝 Fn ω → (∀𝑎 ∈ ran 𝑝 𝑎 = 1o ↔ ∀𝑛 ∈ ω (𝑝𝑛) = 1o))
173, 5, 163syl 17 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → (∀𝑎 ∈ ran 𝑝 𝑎 = 1o ↔ ∀𝑛 ∈ ω (𝑝𝑛) = 1o))
1814, 17mpbird 166 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → ∀𝑎 ∈ ran 𝑝 𝑎 = 1o)
19 peano1 4516 . . . . . . . . . . . . . . . 16 ∅ ∈ ω
20 elex2 2705 . . . . . . . . . . . . . . . 16 (∅ ∈ ω → ∃𝑏 𝑏 ∈ ω)
2119, 20ax-mp 5 . . . . . . . . . . . . . . 15 𝑏 𝑏 ∈ ω
22 fdm 5286 . . . . . . . . . . . . . . . . 17 (𝑝:ω⟶2o → dom 𝑝 = ω)
2322eleq2d 2210 . . . . . . . . . . . . . . . 16 (𝑝:ω⟶2o → (𝑏 ∈ dom 𝑝𝑏 ∈ ω))
2423exbidv 1798 . . . . . . . . . . . . . . 15 (𝑝:ω⟶2o → (∃𝑏 𝑏 ∈ dom 𝑝 ↔ ∃𝑏 𝑏 ∈ ω))
2521, 24mpbiri 167 . . . . . . . . . . . . . 14 (𝑝:ω⟶2o → ∃𝑏 𝑏 ∈ dom 𝑝)
26 dmmrnm 4766 . . . . . . . . . . . . . . 15 (∃𝑏 𝑏 ∈ dom 𝑝 ↔ ∃𝑎 𝑎 ∈ ran 𝑝)
27 eqsnm 3690 . . . . . . . . . . . . . . 15 (∃𝑎 𝑎 ∈ ran 𝑝 → (ran 𝑝 = {1o} ↔ ∀𝑎 ∈ ran 𝑝 𝑎 = 1o))
2826, 27sylbi 120 . . . . . . . . . . . . . 14 (∃𝑏 𝑏 ∈ dom 𝑝 → (ran 𝑝 = {1o} ↔ ∀𝑎 ∈ ran 𝑝 𝑎 = 1o))
2925, 28syl 14 . . . . . . . . . . . . 13 (𝑝:ω⟶2o → (ran 𝑝 = {1o} ↔ ∀𝑎 ∈ ran 𝑝 𝑎 = 1o))
303, 4, 293syl 17 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → (ran 𝑝 = {1o} ↔ ∀𝑎 ∈ ran 𝑝 𝑎 = 1o))
3118, 30mpbird 166 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → ran 𝑝 = {1o})
32 eqimss 3156 . . . . . . . . . . 11 (ran 𝑝 = {1o} → ran 𝑝 ⊆ {1o})
3331, 32syl 14 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → ran 𝑝 ⊆ {1o})
34 df-f 5135 . . . . . . . . . 10 (𝑝:ω⟶{1o} ↔ (𝑝 Fn ω ∧ ran 𝑝 ⊆ {1o}))
356, 33, 34sylanbrc 414 . . . . . . . . 9 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → 𝑝:ω⟶{1o})
36 1onn 6424 . . . . . . . . . 10 1o ∈ ω
37 fconst2g 5643 . . . . . . . . . 10 (1o ∈ ω → (𝑝:ω⟶{1o} ↔ 𝑝 = (ω × {1o})))
3836, 37ax-mp 5 . . . . . . . . 9 (𝑝:ω⟶{1o} ↔ 𝑝 = (ω × {1o}))
3935, 38sylib 121 . . . . . . . 8 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → 𝑝 = (ω × {1o}))
40 fconstmpt 4594 . . . . . . . 8 (ω × {1o}) = (𝑥 ∈ ω ↦ 1o)
4139, 40eqtrdi 2189 . . . . . . 7 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → 𝑝 = (𝑥 ∈ ω ↦ 1o))
4241fveq2d 5433 . . . . . 6 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → (𝑄𝑝) = (𝑄‘(𝑥 ∈ ω ↦ 1o)))
4342, 13, 103eqtr3d 2181 . . . . 5 (((𝜑𝑝 ∈ ℕ) ∧ (𝑄𝑝) = ∅) → ∅ = 1o)
4443ex 114 . . . 4 ((𝜑𝑝 ∈ ℕ) → ((𝑄𝑝) = ∅ → ∅ = 1o))
452, 44mtoi 654 . . 3 ((𝜑𝑝 ∈ ℕ) → ¬ (𝑄𝑝) = ∅)
46 elmapi 6572 . . . . . . 7 (𝑄 ∈ (2o𝑚) → 𝑄:ℕ⟶2o)
477, 46syl 14 . . . . . 6 (𝜑𝑄:ℕ⟶2o)
4847ffvelrnda 5563 . . . . 5 ((𝜑𝑝 ∈ ℕ) → (𝑄𝑝) ∈ 2o)
49 elpri 3555 . . . . . 6 ((𝑄𝑝) ∈ {∅, 1o} → ((𝑄𝑝) = ∅ ∨ (𝑄𝑝) = 1o))
50 df2o3 6335 . . . . . 6 2o = {∅, 1o}
5149, 50eleq2s 2235 . . . . 5 ((𝑄𝑝) ∈ 2o → ((𝑄𝑝) = ∅ ∨ (𝑄𝑝) = 1o))
5248, 51syl 14 . . . 4 ((𝜑𝑝 ∈ ℕ) → ((𝑄𝑝) = ∅ ∨ (𝑄𝑝) = 1o))
5352orcomd 719 . . 3 ((𝜑𝑝 ∈ ℕ) → ((𝑄𝑝) = 1o ∨ (𝑄𝑝) = ∅))
5445, 53ecased 1328 . 2 ((𝜑𝑝 ∈ ℕ) → (𝑄𝑝) = 1o)
5554ralrimiva 2508 1 (𝜑 → ∀𝑝 ∈ ℕ (𝑄𝑝) = 1o)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698   = wceq 1332  wex 1469  wcel 1481  wral 2417  wss 3076  c0 3368  ifcif 3479  {csn 3532  {cpr 3533  cmpt 3997  ωcom 4512   × cxp 4545  dom cdm 4547  ran crn 4548   Fn wfn 5126  wf 5127  cfv 5131  (class class class)co 5782  1oc1o 6314  2oc2o 6315  𝑚 cmap 6550  xnninf 7013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1o 6321  df-2o 6322  df-map 6552  df-nninf 7015
This theorem is referenced by:  nninfsel  13388  nninffeq  13391
  Copyright terms: Public domain W3C validator