ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djune GIF version

Theorem djune 7139
Description: Left and right injection never produce equal values. (Contributed by Jim Kingdon, 2-Jul-2022.)
Assertion
Ref Expression
djune ((𝐴𝑉𝐵𝑊) → (inl‘𝐴) ≠ (inr‘𝐵))

Proof of Theorem djune
StepHypRef Expression
1 1n0 6487 . . . . 5 1o ≠ ∅
21nesymi 2410 . . . 4 ¬ ∅ = 1o
3 1stinl 7135 . . . . 5 (𝐴𝑉 → (1st ‘(inl‘𝐴)) = ∅)
4 1stinr 7137 . . . . 5 (𝐵𝑊 → (1st ‘(inr‘𝐵)) = 1o)
53, 4eqeqan12d 2209 . . . 4 ((𝐴𝑉𝐵𝑊) → ((1st ‘(inl‘𝐴)) = (1st ‘(inr‘𝐵)) ↔ ∅ = 1o))
62, 5mtbiri 676 . . 3 ((𝐴𝑉𝐵𝑊) → ¬ (1st ‘(inl‘𝐴)) = (1st ‘(inr‘𝐵)))
7 fveq2 5555 . . 3 ((inl‘𝐴) = (inr‘𝐵) → (1st ‘(inl‘𝐴)) = (1st ‘(inr‘𝐵)))
86, 7nsyl 629 . 2 ((𝐴𝑉𝐵𝑊) → ¬ (inl‘𝐴) = (inr‘𝐵))
98neqned 2371 1 ((𝐴𝑉𝐵𝑊) → (inl‘𝐴) ≠ (inr‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wne 2364  c0 3447  cfv 5255  1st c1st 6193  1oc1o 6464  inlcinl 7106  inrcinr 7107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fv 5263  df-1st 6195  df-1o 6471  df-inl 7108  df-inr 7109
This theorem is referenced by:  omp1eomlem  7155  difinfsnlem  7160  difinfsn  7161  fodjuomnilemdc  7205  exmidfodomrlemr  7264  exmidfodomrlemrALT  7265
  Copyright terms: Public domain W3C validator