ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djune GIF version

Theorem djune 7043
Description: Left and right injection never produce equal values. (Contributed by Jim Kingdon, 2-Jul-2022.)
Assertion
Ref Expression
djune ((𝐴𝑉𝐵𝑊) → (inl‘𝐴) ≠ (inr‘𝐵))

Proof of Theorem djune
StepHypRef Expression
1 1n0 6400 . . . . 5 1o ≠ ∅
21nesymi 2382 . . . 4 ¬ ∅ = 1o
3 1stinl 7039 . . . . 5 (𝐴𝑉 → (1st ‘(inl‘𝐴)) = ∅)
4 1stinr 7041 . . . . 5 (𝐵𝑊 → (1st ‘(inr‘𝐵)) = 1o)
53, 4eqeqan12d 2181 . . . 4 ((𝐴𝑉𝐵𝑊) → ((1st ‘(inl‘𝐴)) = (1st ‘(inr‘𝐵)) ↔ ∅ = 1o))
62, 5mtbiri 665 . . 3 ((𝐴𝑉𝐵𝑊) → ¬ (1st ‘(inl‘𝐴)) = (1st ‘(inr‘𝐵)))
7 fveq2 5486 . . 3 ((inl‘𝐴) = (inr‘𝐵) → (1st ‘(inl‘𝐴)) = (1st ‘(inr‘𝐵)))
86, 7nsyl 618 . 2 ((𝐴𝑉𝐵𝑊) → ¬ (inl‘𝐴) = (inr‘𝐵))
98neqned 2343 1 ((𝐴𝑉𝐵𝑊) → (inl‘𝐴) ≠ (inr‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  wne 2336  c0 3409  cfv 5188  1st c1st 6106  1oc1o 6377  inlcinl 7010  inrcinr 7011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fv 5196  df-1st 6108  df-1o 6384  df-inl 7012  df-inr 7013
This theorem is referenced by:  omp1eomlem  7059  difinfsnlem  7064  difinfsn  7065  fodjuomnilemdc  7108  exmidfodomrlemr  7158  exmidfodomrlemrALT  7159
  Copyright terms: Public domain W3C validator