| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djune | GIF version | ||
| Description: Left and right injection never produce equal values. (Contributed by Jim Kingdon, 2-Jul-2022.) |
| Ref | Expression |
|---|---|
| djune | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (inl‘𝐴) ≠ (inr‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1n0 6541 | . . . . 5 ⊢ 1o ≠ ∅ | |
| 2 | 1 | nesymi 2424 | . . . 4 ⊢ ¬ ∅ = 1o |
| 3 | 1stinl 7202 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (1st ‘(inl‘𝐴)) = ∅) | |
| 4 | 1stinr 7204 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → (1st ‘(inr‘𝐵)) = 1o) | |
| 5 | 3, 4 | eqeqan12d 2223 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((1st ‘(inl‘𝐴)) = (1st ‘(inr‘𝐵)) ↔ ∅ = 1o)) |
| 6 | 2, 5 | mtbiri 677 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ¬ (1st ‘(inl‘𝐴)) = (1st ‘(inr‘𝐵))) |
| 7 | fveq2 5599 | . . 3 ⊢ ((inl‘𝐴) = (inr‘𝐵) → (1st ‘(inl‘𝐴)) = (1st ‘(inr‘𝐵))) | |
| 8 | 6, 7 | nsyl 629 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ¬ (inl‘𝐴) = (inr‘𝐵)) |
| 9 | 8 | neqned 2385 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (inl‘𝐴) ≠ (inr‘𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 ≠ wne 2378 ∅c0 3468 ‘cfv 5290 1st c1st 6247 1oc1o 6518 inlcinl 7173 inrcinr 7174 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-iota 5251 df-fun 5292 df-fv 5298 df-1st 6249 df-1o 6525 df-inl 7175 df-inr 7176 |
| This theorem is referenced by: omp1eomlem 7222 difinfsnlem 7227 difinfsn 7228 fodjuomnilemdc 7272 exmidfodomrlemr 7341 exmidfodomrlemrALT 7342 |
| Copyright terms: Public domain | W3C validator |