ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djune GIF version

Theorem djune 7055
Description: Left and right injection never produce equal values. (Contributed by Jim Kingdon, 2-Jul-2022.)
Assertion
Ref Expression
djune ((𝐴𝑉𝐵𝑊) → (inl‘𝐴) ≠ (inr‘𝐵))

Proof of Theorem djune
StepHypRef Expression
1 1n0 6411 . . . . 5 1o ≠ ∅
21nesymi 2386 . . . 4 ¬ ∅ = 1o
3 1stinl 7051 . . . . 5 (𝐴𝑉 → (1st ‘(inl‘𝐴)) = ∅)
4 1stinr 7053 . . . . 5 (𝐵𝑊 → (1st ‘(inr‘𝐵)) = 1o)
53, 4eqeqan12d 2186 . . . 4 ((𝐴𝑉𝐵𝑊) → ((1st ‘(inl‘𝐴)) = (1st ‘(inr‘𝐵)) ↔ ∅ = 1o))
62, 5mtbiri 670 . . 3 ((𝐴𝑉𝐵𝑊) → ¬ (1st ‘(inl‘𝐴)) = (1st ‘(inr‘𝐵)))
7 fveq2 5496 . . 3 ((inl‘𝐴) = (inr‘𝐵) → (1st ‘(inl‘𝐴)) = (1st ‘(inr‘𝐵)))
86, 7nsyl 623 . 2 ((𝐴𝑉𝐵𝑊) → ¬ (inl‘𝐴) = (inr‘𝐵))
98neqned 2347 1 ((𝐴𝑉𝐵𝑊) → (inl‘𝐴) ≠ (inr‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wne 2340  c0 3414  cfv 5198  1st c1st 6117  1oc1o 6388  inlcinl 7022  inrcinr 7023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fv 5206  df-1st 6119  df-1o 6395  df-inl 7024  df-inr 7025
This theorem is referenced by:  omp1eomlem  7071  difinfsnlem  7076  difinfsn  7077  fodjuomnilemdc  7120  exmidfodomrlemr  7179  exmidfodomrlemrALT  7180
  Copyright terms: Public domain W3C validator