ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djune GIF version

Theorem djune 7079
Description: Left and right injection never produce equal values. (Contributed by Jim Kingdon, 2-Jul-2022.)
Assertion
Ref Expression
djune ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ (inlβ€˜π΄) β‰  (inrβ€˜π΅))

Proof of Theorem djune
StepHypRef Expression
1 1n0 6435 . . . . 5 1o β‰  βˆ…
21nesymi 2393 . . . 4 Β¬ βˆ… = 1o
3 1stinl 7075 . . . . 5 (𝐴 ∈ 𝑉 β†’ (1st β€˜(inlβ€˜π΄)) = βˆ…)
4 1stinr 7077 . . . . 5 (𝐡 ∈ π‘Š β†’ (1st β€˜(inrβ€˜π΅)) = 1o)
53, 4eqeqan12d 2193 . . . 4 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ ((1st β€˜(inlβ€˜π΄)) = (1st β€˜(inrβ€˜π΅)) ↔ βˆ… = 1o))
62, 5mtbiri 675 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ Β¬ (1st β€˜(inlβ€˜π΄)) = (1st β€˜(inrβ€˜π΅)))
7 fveq2 5517 . . 3 ((inlβ€˜π΄) = (inrβ€˜π΅) β†’ (1st β€˜(inlβ€˜π΄)) = (1st β€˜(inrβ€˜π΅)))
86, 7nsyl 628 . 2 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ Β¬ (inlβ€˜π΄) = (inrβ€˜π΅))
98neqned 2354 1 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ (inlβ€˜π΄) β‰  (inrβ€˜π΅))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   = wceq 1353   ∈ wcel 2148   β‰  wne 2347  βˆ…c0 3424  β€˜cfv 5218  1st c1st 6141  1oc1o 6412  inlcinl 7046  inrcinr 7047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fv 5226  df-1st 6143  df-1o 6419  df-inl 7048  df-inr 7049
This theorem is referenced by:  omp1eomlem  7095  difinfsnlem  7100  difinfsn  7101  fodjuomnilemdc  7144  exmidfodomrlemr  7203  exmidfodomrlemrALT  7204
  Copyright terms: Public domain W3C validator