ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djune GIF version

Theorem djune 7144
Description: Left and right injection never produce equal values. (Contributed by Jim Kingdon, 2-Jul-2022.)
Assertion
Ref Expression
djune ((𝐴𝑉𝐵𝑊) → (inl‘𝐴) ≠ (inr‘𝐵))

Proof of Theorem djune
StepHypRef Expression
1 1n0 6490 . . . . 5 1o ≠ ∅
21nesymi 2413 . . . 4 ¬ ∅ = 1o
3 1stinl 7140 . . . . 5 (𝐴𝑉 → (1st ‘(inl‘𝐴)) = ∅)
4 1stinr 7142 . . . . 5 (𝐵𝑊 → (1st ‘(inr‘𝐵)) = 1o)
53, 4eqeqan12d 2212 . . . 4 ((𝐴𝑉𝐵𝑊) → ((1st ‘(inl‘𝐴)) = (1st ‘(inr‘𝐵)) ↔ ∅ = 1o))
62, 5mtbiri 676 . . 3 ((𝐴𝑉𝐵𝑊) → ¬ (1st ‘(inl‘𝐴)) = (1st ‘(inr‘𝐵)))
7 fveq2 5558 . . 3 ((inl‘𝐴) = (inr‘𝐵) → (1st ‘(inl‘𝐴)) = (1st ‘(inr‘𝐵)))
86, 7nsyl 629 . 2 ((𝐴𝑉𝐵𝑊) → ¬ (inl‘𝐴) = (inr‘𝐵))
98neqned 2374 1 ((𝐴𝑉𝐵𝑊) → (inl‘𝐴) ≠ (inr‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wne 2367  c0 3450  cfv 5258  1st c1st 6196  1oc1o 6467  inlcinl 7111  inrcinr 7112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fv 5266  df-1st 6198  df-1o 6474  df-inl 7113  df-inr 7114
This theorem is referenced by:  omp1eomlem  7160  difinfsnlem  7165  difinfsn  7166  fodjuomnilemdc  7210  exmidfodomrlemr  7269  exmidfodomrlemrALT  7270
  Copyright terms: Public domain W3C validator