![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > djune | GIF version |
Description: Left and right injection never produce equal values. (Contributed by Jim Kingdon, 2-Jul-2022.) |
Ref | Expression |
---|---|
djune | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (inl‘𝐴) ≠ (inr‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1n0 6485 | . . . . 5 ⊢ 1o ≠ ∅ | |
2 | 1 | nesymi 2410 | . . . 4 ⊢ ¬ ∅ = 1o |
3 | 1stinl 7133 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (1st ‘(inl‘𝐴)) = ∅) | |
4 | 1stinr 7135 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → (1st ‘(inr‘𝐵)) = 1o) | |
5 | 3, 4 | eqeqan12d 2209 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((1st ‘(inl‘𝐴)) = (1st ‘(inr‘𝐵)) ↔ ∅ = 1o)) |
6 | 2, 5 | mtbiri 676 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ¬ (1st ‘(inl‘𝐴)) = (1st ‘(inr‘𝐵))) |
7 | fveq2 5554 | . . 3 ⊢ ((inl‘𝐴) = (inr‘𝐵) → (1st ‘(inl‘𝐴)) = (1st ‘(inr‘𝐵))) | |
8 | 6, 7 | nsyl 629 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ¬ (inl‘𝐴) = (inr‘𝐵)) |
9 | 8 | neqned 2371 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (inl‘𝐴) ≠ (inr‘𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ∅c0 3446 ‘cfv 5254 1st c1st 6191 1oc1o 6462 inlcinl 7104 inrcinr 7105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-iota 5215 df-fun 5256 df-fv 5262 df-1st 6193 df-1o 6469 df-inl 7106 df-inr 7107 |
This theorem is referenced by: omp1eomlem 7153 difinfsnlem 7158 difinfsn 7159 fodjuomnilemdc 7203 exmidfodomrlemr 7262 exmidfodomrlemrALT 7263 |
Copyright terms: Public domain | W3C validator |