| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djune | GIF version | ||
| Description: Left and right injection never produce equal values. (Contributed by Jim Kingdon, 2-Jul-2022.) |
| Ref | Expression |
|---|---|
| djune | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (inl‘𝐴) ≠ (inr‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1n0 6576 | . . . . 5 ⊢ 1o ≠ ∅ | |
| 2 | 1 | nesymi 2446 | . . . 4 ⊢ ¬ ∅ = 1o |
| 3 | 1stinl 7237 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (1st ‘(inl‘𝐴)) = ∅) | |
| 4 | 1stinr 7239 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → (1st ‘(inr‘𝐵)) = 1o) | |
| 5 | 3, 4 | eqeqan12d 2245 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((1st ‘(inl‘𝐴)) = (1st ‘(inr‘𝐵)) ↔ ∅ = 1o)) |
| 6 | 2, 5 | mtbiri 679 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ¬ (1st ‘(inl‘𝐴)) = (1st ‘(inr‘𝐵))) |
| 7 | fveq2 5626 | . . 3 ⊢ ((inl‘𝐴) = (inr‘𝐵) → (1st ‘(inl‘𝐴)) = (1st ‘(inr‘𝐵))) | |
| 8 | 6, 7 | nsyl 631 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ¬ (inl‘𝐴) = (inr‘𝐵)) |
| 9 | 8 | neqned 2407 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (inl‘𝐴) ≠ (inr‘𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ∅c0 3491 ‘cfv 5317 1st c1st 6282 1oc1o 6553 inlcinl 7208 inrcinr 7209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-iota 5277 df-fun 5319 df-fv 5325 df-1st 6284 df-1o 6560 df-inl 7210 df-inr 7211 |
| This theorem is referenced by: omp1eomlem 7257 difinfsnlem 7262 difinfsn 7263 fodjuomnilemdc 7307 exmidfodomrlemr 7376 exmidfodomrlemrALT 7377 |
| Copyright terms: Public domain | W3C validator |