| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djune | GIF version | ||
| Description: Left and right injection never produce equal values. (Contributed by Jim Kingdon, 2-Jul-2022.) |
| Ref | Expression |
|---|---|
| djune | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (inl‘𝐴) ≠ (inr‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1n0 6518 | . . . . 5 ⊢ 1o ≠ ∅ | |
| 2 | 1 | nesymi 2422 | . . . 4 ⊢ ¬ ∅ = 1o |
| 3 | 1stinl 7176 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (1st ‘(inl‘𝐴)) = ∅) | |
| 4 | 1stinr 7178 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → (1st ‘(inr‘𝐵)) = 1o) | |
| 5 | 3, 4 | eqeqan12d 2221 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((1st ‘(inl‘𝐴)) = (1st ‘(inr‘𝐵)) ↔ ∅ = 1o)) |
| 6 | 2, 5 | mtbiri 677 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ¬ (1st ‘(inl‘𝐴)) = (1st ‘(inr‘𝐵))) |
| 7 | fveq2 5576 | . . 3 ⊢ ((inl‘𝐴) = (inr‘𝐵) → (1st ‘(inl‘𝐴)) = (1st ‘(inr‘𝐵))) | |
| 8 | 6, 7 | nsyl 629 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ¬ (inl‘𝐴) = (inr‘𝐵)) |
| 9 | 8 | neqned 2383 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (inl‘𝐴) ≠ (inr‘𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 ≠ wne 2376 ∅c0 3460 ‘cfv 5271 1st c1st 6224 1oc1o 6495 inlcinl 7147 inrcinr 7148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-iota 5232 df-fun 5273 df-fv 5279 df-1st 6226 df-1o 6502 df-inl 7149 df-inr 7150 |
| This theorem is referenced by: omp1eomlem 7196 difinfsnlem 7201 difinfsn 7202 fodjuomnilemdc 7246 exmidfodomrlemr 7310 exmidfodomrlemrALT 7311 |
| Copyright terms: Public domain | W3C validator |