![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > djune | GIF version |
Description: Left and right injection never produce equal values. (Contributed by Jim Kingdon, 2-Jul-2022.) |
Ref | Expression |
---|---|
djune | β’ ((π΄ β π β§ π΅ β π) β (inlβπ΄) β (inrβπ΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1n0 6435 | . . . . 5 β’ 1o β β | |
2 | 1 | nesymi 2393 | . . . 4 β’ Β¬ β = 1o |
3 | 1stinl 7075 | . . . . 5 β’ (π΄ β π β (1st β(inlβπ΄)) = β ) | |
4 | 1stinr 7077 | . . . . 5 β’ (π΅ β π β (1st β(inrβπ΅)) = 1o) | |
5 | 3, 4 | eqeqan12d 2193 | . . . 4 β’ ((π΄ β π β§ π΅ β π) β ((1st β(inlβπ΄)) = (1st β(inrβπ΅)) β β = 1o)) |
6 | 2, 5 | mtbiri 675 | . . 3 β’ ((π΄ β π β§ π΅ β π) β Β¬ (1st β(inlβπ΄)) = (1st β(inrβπ΅))) |
7 | fveq2 5517 | . . 3 β’ ((inlβπ΄) = (inrβπ΅) β (1st β(inlβπ΄)) = (1st β(inrβπ΅))) | |
8 | 6, 7 | nsyl 628 | . 2 β’ ((π΄ β π β§ π΅ β π) β Β¬ (inlβπ΄) = (inrβπ΅)) |
9 | 8 | neqned 2354 | 1 β’ ((π΄ β π β§ π΅ β π) β (inlβπ΄) β (inrβπ΅)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 = wceq 1353 β wcel 2148 β wne 2347 β c0 3424 βcfv 5218 1st c1st 6141 1oc1o 6412 inlcinl 7046 inrcinr 7047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-suc 4373 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-iota 5180 df-fun 5220 df-fv 5226 df-1st 6143 df-1o 6419 df-inl 7048 df-inr 7049 |
This theorem is referenced by: omp1eomlem 7095 difinfsnlem 7100 difinfsn 7101 fodjuomnilemdc 7144 exmidfodomrlemr 7203 exmidfodomrlemrALT 7204 |
Copyright terms: Public domain | W3C validator |