ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3nelsucpw1 GIF version

Theorem 3nelsucpw1 7346
Description: Three is not an element of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
3nelsucpw1 ¬ 3o ∈ suc 𝒫 1o

Proof of Theorem 3nelsucpw1
StepHypRef Expression
1 1lt2o 6528 . . . . 5 1o ∈ 2o
2 elelsuc 4456 . . . . 5 (1o ∈ 2o → 1o ∈ suc 2o)
31, 2ax-mp 5 . . . 4 1o ∈ suc 2o
4 df-3o 6504 . . . 4 3o = suc 2o
53, 4eleqtrri 2281 . . 3 1o ∈ 3o
6 ssnel 4617 . . 3 (3o ⊆ 1o → ¬ 1o ∈ 3o)
75, 6mt2 641 . 2 ¬ 3o ⊆ 1o
8 pw1ne3 7342 . . . . . 6 𝒫 1o ≠ 3o
98nesymi 2422 . . . . 5 ¬ 3o = 𝒫 1o
109a1i 9 . . . 4 (3o ∈ suc 𝒫 1o → ¬ 3o = 𝒫 1o)
11 elsuci 4450 . . . 4 (3o ∈ suc 𝒫 1o → (3o ∈ 𝒫 1o ∨ 3o = 𝒫 1o))
1210, 11ecased 1362 . . 3 (3o ∈ suc 𝒫 1o → 3o ∈ 𝒫 1o)
1312elpwid 3627 . 2 (3o ∈ suc 𝒫 1o → 3o ⊆ 1o)
147, 13mto 664 1 ¬ 3o ∈ suc 𝒫 1o
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1373  wcel 2176  wss 3166  𝒫 cpw 3616  suc csuc 4412  1oc1o 6495  2oc2o 6496  3oc3o 6497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-uni 3851  df-int 3886  df-tr 4143  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-1o 6502  df-2o 6503  df-3o 6504
This theorem is referenced by:  onntri35  7349
  Copyright terms: Public domain W3C validator