| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3nelsucpw1 | GIF version | ||
| Description: Three is not an element of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
| Ref | Expression |
|---|---|
| 3nelsucpw1 | ⊢ ¬ 3o ∈ suc 𝒫 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1lt2o 6528 | . . . . 5 ⊢ 1o ∈ 2o | |
| 2 | elelsuc 4456 | . . . . 5 ⊢ (1o ∈ 2o → 1o ∈ suc 2o) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ 1o ∈ suc 2o |
| 4 | df-3o 6504 | . . . 4 ⊢ 3o = suc 2o | |
| 5 | 3, 4 | eleqtrri 2281 | . . 3 ⊢ 1o ∈ 3o |
| 6 | ssnel 4617 | . . 3 ⊢ (3o ⊆ 1o → ¬ 1o ∈ 3o) | |
| 7 | 5, 6 | mt2 641 | . 2 ⊢ ¬ 3o ⊆ 1o |
| 8 | pw1ne3 7342 | . . . . . 6 ⊢ 𝒫 1o ≠ 3o | |
| 9 | 8 | nesymi 2422 | . . . . 5 ⊢ ¬ 3o = 𝒫 1o |
| 10 | 9 | a1i 9 | . . . 4 ⊢ (3o ∈ suc 𝒫 1o → ¬ 3o = 𝒫 1o) |
| 11 | elsuci 4450 | . . . 4 ⊢ (3o ∈ suc 𝒫 1o → (3o ∈ 𝒫 1o ∨ 3o = 𝒫 1o)) | |
| 12 | 10, 11 | ecased 1362 | . . 3 ⊢ (3o ∈ suc 𝒫 1o → 3o ∈ 𝒫 1o) |
| 13 | 12 | elpwid 3627 | . 2 ⊢ (3o ∈ suc 𝒫 1o → 3o ⊆ 1o) |
| 14 | 7, 13 | mto 664 | 1 ⊢ ¬ 3o ∈ suc 𝒫 1o |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1373 ∈ wcel 2176 ⊆ wss 3166 𝒫 cpw 3616 suc csuc 4412 1oc1o 6495 2oc2o 6496 3oc3o 6497 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-tr 4143 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-1o 6502 df-2o 6503 df-3o 6504 |
| This theorem is referenced by: onntri35 7349 |
| Copyright terms: Public domain | W3C validator |