| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3nelsucpw1 | GIF version | ||
| Description: Three is not an element of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
| Ref | Expression |
|---|---|
| 3nelsucpw1 | ⊢ ¬ 3o ∈ suc 𝒫 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1lt2o 6551 | . . . . 5 ⊢ 1o ∈ 2o | |
| 2 | elelsuc 4474 | . . . . 5 ⊢ (1o ∈ 2o → 1o ∈ suc 2o) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ 1o ∈ suc 2o |
| 4 | df-3o 6527 | . . . 4 ⊢ 3o = suc 2o | |
| 5 | 3, 4 | eleqtrri 2283 | . . 3 ⊢ 1o ∈ 3o |
| 6 | ssnel 4635 | . . 3 ⊢ (3o ⊆ 1o → ¬ 1o ∈ 3o) | |
| 7 | 5, 6 | mt2 641 | . 2 ⊢ ¬ 3o ⊆ 1o |
| 8 | pw1ne3 7376 | . . . . . 6 ⊢ 𝒫 1o ≠ 3o | |
| 9 | 8 | nesymi 2424 | . . . . 5 ⊢ ¬ 3o = 𝒫 1o |
| 10 | 9 | a1i 9 | . . . 4 ⊢ (3o ∈ suc 𝒫 1o → ¬ 3o = 𝒫 1o) |
| 11 | elsuci 4468 | . . . 4 ⊢ (3o ∈ suc 𝒫 1o → (3o ∈ 𝒫 1o ∨ 3o = 𝒫 1o)) | |
| 12 | 10, 11 | ecased 1362 | . . 3 ⊢ (3o ∈ suc 𝒫 1o → 3o ∈ 𝒫 1o) |
| 13 | 12 | elpwid 3637 | . 2 ⊢ (3o ∈ suc 𝒫 1o → 3o ⊆ 1o) |
| 14 | 7, 13 | mto 664 | 1 ⊢ ¬ 3o ∈ suc 𝒫 1o |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1373 ∈ wcel 2178 ⊆ wss 3174 𝒫 cpw 3626 suc csuc 4430 1oc1o 6518 2oc2o 6519 3oc3o 6520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-int 3900 df-tr 4159 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-1o 6525 df-2o 6526 df-3o 6527 |
| This theorem is referenced by: onntri35 7383 |
| Copyright terms: Public domain | W3C validator |