Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3nelsucpw1 | GIF version |
Description: Three is not an element of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
Ref | Expression |
---|---|
3nelsucpw1 | ⊢ ¬ 3o ∈ suc 𝒫 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2o 6410 | . . . . 5 ⊢ 1o ∈ 2o | |
2 | elelsuc 4387 | . . . . 5 ⊢ (1o ∈ 2o → 1o ∈ suc 2o) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ 1o ∈ suc 2o |
4 | df-3o 6386 | . . . 4 ⊢ 3o = suc 2o | |
5 | 3, 4 | eleqtrri 2242 | . . 3 ⊢ 1o ∈ 3o |
6 | ssnel 4546 | . . 3 ⊢ (3o ⊆ 1o → ¬ 1o ∈ 3o) | |
7 | 5, 6 | mt2 630 | . 2 ⊢ ¬ 3o ⊆ 1o |
8 | pw1ne3 7186 | . . . . . 6 ⊢ 𝒫 1o ≠ 3o | |
9 | 8 | nesymi 2382 | . . . . 5 ⊢ ¬ 3o = 𝒫 1o |
10 | 9 | a1i 9 | . . . 4 ⊢ (3o ∈ suc 𝒫 1o → ¬ 3o = 𝒫 1o) |
11 | elsuci 4381 | . . . 4 ⊢ (3o ∈ suc 𝒫 1o → (3o ∈ 𝒫 1o ∨ 3o = 𝒫 1o)) | |
12 | 10, 11 | ecased 1339 | . . 3 ⊢ (3o ∈ suc 𝒫 1o → 3o ∈ 𝒫 1o) |
13 | 12 | elpwid 3570 | . 2 ⊢ (3o ∈ suc 𝒫 1o → 3o ⊆ 1o) |
14 | 7, 13 | mto 652 | 1 ⊢ ¬ 3o ∈ suc 𝒫 1o |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1343 ∈ wcel 2136 ⊆ wss 3116 𝒫 cpw 3559 suc csuc 4343 1oc1o 6377 2oc2o 6378 3oc3o 6379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-1o 6384 df-2o 6385 df-3o 6386 |
This theorem is referenced by: onntri35 7193 |
Copyright terms: Public domain | W3C validator |