ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3nelsucpw1 GIF version

Theorem 3nelsucpw1 7345
Description: Three is not an element of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
3nelsucpw1 ¬ 3o ∈ suc 𝒫 1o

Proof of Theorem 3nelsucpw1
StepHypRef Expression
1 1lt2o 6527 . . . . 5 1o ∈ 2o
2 elelsuc 4455 . . . . 5 (1o ∈ 2o → 1o ∈ suc 2o)
31, 2ax-mp 5 . . . 4 1o ∈ suc 2o
4 df-3o 6503 . . . 4 3o = suc 2o
53, 4eleqtrri 2280 . . 3 1o ∈ 3o
6 ssnel 4616 . . 3 (3o ⊆ 1o → ¬ 1o ∈ 3o)
75, 6mt2 641 . 2 ¬ 3o ⊆ 1o
8 pw1ne3 7341 . . . . . 6 𝒫 1o ≠ 3o
98nesymi 2421 . . . . 5 ¬ 3o = 𝒫 1o
109a1i 9 . . . 4 (3o ∈ suc 𝒫 1o → ¬ 3o = 𝒫 1o)
11 elsuci 4449 . . . 4 (3o ∈ suc 𝒫 1o → (3o ∈ 𝒫 1o ∨ 3o = 𝒫 1o))
1210, 11ecased 1361 . . 3 (3o ∈ suc 𝒫 1o → 3o ∈ 𝒫 1o)
1312elpwid 3626 . 2 (3o ∈ suc 𝒫 1o → 3o ⊆ 1o)
147, 13mto 663 1 ¬ 3o ∈ suc 𝒫 1o
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1372  wcel 2175  wss 3165  𝒫 cpw 3615  suc csuc 4411  1oc1o 6494  2oc2o 6495  3oc3o 6496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-uni 3850  df-int 3885  df-tr 4142  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-1o 6501  df-2o 6502  df-3o 6503
This theorem is referenced by:  onntri35  7348
  Copyright terms: Public domain W3C validator