Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3nelsucpw1 | GIF version |
Description: Three is not an element of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
Ref | Expression |
---|---|
3nelsucpw1 | ⊢ ¬ 3o ∈ suc 𝒫 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2o 6383 | . . . . 5 ⊢ 1o ∈ 2o | |
2 | elelsuc 4368 | . . . . 5 ⊢ (1o ∈ 2o → 1o ∈ suc 2o) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ 1o ∈ suc 2o |
4 | df-3o 6359 | . . . 4 ⊢ 3o = suc 2o | |
5 | 3, 4 | eleqtrri 2233 | . . 3 ⊢ 1o ∈ 3o |
6 | ssnel 4526 | . . 3 ⊢ (3o ⊆ 1o → ¬ 1o ∈ 3o) | |
7 | 5, 6 | mt2 630 | . 2 ⊢ ¬ 3o ⊆ 1o |
8 | pw1ne3 7148 | . . . . . 6 ⊢ 𝒫 1o ≠ 3o | |
9 | 8 | nesymi 2373 | . . . . 5 ⊢ ¬ 3o = 𝒫 1o |
10 | 9 | a1i 9 | . . . 4 ⊢ (3o ∈ suc 𝒫 1o → ¬ 3o = 𝒫 1o) |
11 | elsuci 4362 | . . . 4 ⊢ (3o ∈ suc 𝒫 1o → (3o ∈ 𝒫 1o ∨ 3o = 𝒫 1o)) | |
12 | 10, 11 | ecased 1331 | . . 3 ⊢ (3o ∈ suc 𝒫 1o → 3o ∈ 𝒫 1o) |
13 | 12 | elpwid 3554 | . 2 ⊢ (3o ∈ suc 𝒫 1o → 3o ⊆ 1o) |
14 | 7, 13 | mto 652 | 1 ⊢ ¬ 3o ∈ suc 𝒫 1o |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1335 ∈ wcel 2128 ⊆ wss 3102 𝒫 cpw 3543 suc csuc 4324 1oc1o 6350 2oc2o 6351 3oc3o 6352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-uni 3773 df-int 3808 df-tr 4063 df-iord 4325 df-on 4327 df-suc 4330 df-iom 4548 df-1o 6357 df-2o 6358 df-3o 6359 |
This theorem is referenced by: onntri35 7155 |
Copyright terms: Public domain | W3C validator |