ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3nelsucpw1 GIF version

Theorem 3nelsucpw1 7415
Description: Three is not an element of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
3nelsucpw1 ¬ 3o ∈ suc 𝒫 1o

Proof of Theorem 3nelsucpw1
StepHypRef Expression
1 1lt2o 6586 . . . . 5 1o ∈ 2o
2 elelsuc 4499 . . . . 5 (1o ∈ 2o → 1o ∈ suc 2o)
31, 2ax-mp 5 . . . 4 1o ∈ suc 2o
4 df-3o 6562 . . . 4 3o = suc 2o
53, 4eleqtrri 2305 . . 3 1o ∈ 3o
6 ssnel 4660 . . 3 (3o ⊆ 1o → ¬ 1o ∈ 3o)
75, 6mt2 643 . 2 ¬ 3o ⊆ 1o
8 pw1ne3 7411 . . . . . 6 𝒫 1o ≠ 3o
98nesymi 2446 . . . . 5 ¬ 3o = 𝒫 1o
109a1i 9 . . . 4 (3o ∈ suc 𝒫 1o → ¬ 3o = 𝒫 1o)
11 elsuci 4493 . . . 4 (3o ∈ suc 𝒫 1o → (3o ∈ 𝒫 1o ∨ 3o = 𝒫 1o))
1210, 11ecased 1383 . . 3 (3o ∈ suc 𝒫 1o → 3o ∈ 𝒫 1o)
1312elpwid 3660 . 2 (3o ∈ suc 𝒫 1o → 3o ⊆ 1o)
147, 13mto 666 1 ¬ 3o ∈ suc 𝒫 1o
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1395  wcel 2200  wss 3197  𝒫 cpw 3649  suc csuc 4455  1oc1o 6553  2oc2o 6554  3oc3o 6555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-int 3923  df-tr 4182  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-1o 6560  df-2o 6561  df-3o 6562
This theorem is referenced by:  onntri35  7418
  Copyright terms: Public domain W3C validator