ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3nelsucpw1 GIF version

Theorem 3nelsucpw1 7152
Description: Three is not an element of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
3nelsucpw1 ¬ 3o ∈ suc 𝒫 1o

Proof of Theorem 3nelsucpw1
StepHypRef Expression
1 1lt2o 6383 . . . . 5 1o ∈ 2o
2 elelsuc 4368 . . . . 5 (1o ∈ 2o → 1o ∈ suc 2o)
31, 2ax-mp 5 . . . 4 1o ∈ suc 2o
4 df-3o 6359 . . . 4 3o = suc 2o
53, 4eleqtrri 2233 . . 3 1o ∈ 3o
6 ssnel 4526 . . 3 (3o ⊆ 1o → ¬ 1o ∈ 3o)
75, 6mt2 630 . 2 ¬ 3o ⊆ 1o
8 pw1ne3 7148 . . . . . 6 𝒫 1o ≠ 3o
98nesymi 2373 . . . . 5 ¬ 3o = 𝒫 1o
109a1i 9 . . . 4 (3o ∈ suc 𝒫 1o → ¬ 3o = 𝒫 1o)
11 elsuci 4362 . . . 4 (3o ∈ suc 𝒫 1o → (3o ∈ 𝒫 1o ∨ 3o = 𝒫 1o))
1210, 11ecased 1331 . . 3 (3o ∈ suc 𝒫 1o → 3o ∈ 𝒫 1o)
1312elpwid 3554 . 2 (3o ∈ suc 𝒫 1o → 3o ⊆ 1o)
147, 13mto 652 1 ¬ 3o ∈ suc 𝒫 1o
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1335  wcel 2128  wss 3102  𝒫 cpw 3543  suc csuc 4324  1oc1o 6350  2oc2o 6351  3oc3o 6352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-uni 3773  df-int 3808  df-tr 4063  df-iord 4325  df-on 4327  df-suc 4330  df-iom 4548  df-1o 6357  df-2o 6358  df-3o 6359
This theorem is referenced by:  onntri35  7155
  Copyright terms: Public domain W3C validator