![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3nelsucpw1 | GIF version |
Description: Three is not an element of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
Ref | Expression |
---|---|
3nelsucpw1 | ⊢ ¬ 3o ∈ suc 𝒫 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2o 6445 | . . . . 5 ⊢ 1o ∈ 2o | |
2 | elelsuc 4411 | . . . . 5 ⊢ (1o ∈ 2o → 1o ∈ suc 2o) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ 1o ∈ suc 2o |
4 | df-3o 6421 | . . . 4 ⊢ 3o = suc 2o | |
5 | 3, 4 | eleqtrri 2253 | . . 3 ⊢ 1o ∈ 3o |
6 | ssnel 4570 | . . 3 ⊢ (3o ⊆ 1o → ¬ 1o ∈ 3o) | |
7 | 5, 6 | mt2 640 | . 2 ⊢ ¬ 3o ⊆ 1o |
8 | pw1ne3 7231 | . . . . . 6 ⊢ 𝒫 1o ≠ 3o | |
9 | 8 | nesymi 2393 | . . . . 5 ⊢ ¬ 3o = 𝒫 1o |
10 | 9 | a1i 9 | . . . 4 ⊢ (3o ∈ suc 𝒫 1o → ¬ 3o = 𝒫 1o) |
11 | elsuci 4405 | . . . 4 ⊢ (3o ∈ suc 𝒫 1o → (3o ∈ 𝒫 1o ∨ 3o = 𝒫 1o)) | |
12 | 10, 11 | ecased 1349 | . . 3 ⊢ (3o ∈ suc 𝒫 1o → 3o ∈ 𝒫 1o) |
13 | 12 | elpwid 3588 | . 2 ⊢ (3o ∈ suc 𝒫 1o → 3o ⊆ 1o) |
14 | 7, 13 | mto 662 | 1 ⊢ ¬ 3o ∈ suc 𝒫 1o |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1353 ∈ wcel 2148 ⊆ wss 3131 𝒫 cpw 3577 suc csuc 4367 1oc1o 6412 2oc2o 6413 3oc3o 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-uni 3812 df-int 3847 df-tr 4104 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-1o 6419 df-2o 6420 df-3o 6421 |
This theorem is referenced by: onntri35 7238 |
Copyright terms: Public domain | W3C validator |