ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffv GIF version

Theorem nffv 5564
Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nffv.1 𝑥𝐹
nffv.2 𝑥𝐴
Assertion
Ref Expression
nffv 𝑥(𝐹𝐴)

Proof of Theorem nffv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-fv 5262 . 2 (𝐹𝐴) = (℩𝑦𝐴𝐹𝑦)
2 nffv.2 . . . 4 𝑥𝐴
3 nffv.1 . . . 4 𝑥𝐹
4 nfcv 2336 . . . 4 𝑥𝑦
52, 3, 4nfbr 4075 . . 3 𝑥 𝐴𝐹𝑦
65nfiotaw 5219 . 2 𝑥(℩𝑦𝐴𝐹𝑦)
71, 6nfcxfr 2333 1 𝑥(𝐹𝐴)
Colors of variables: wff set class
Syntax hints:  wnfc 2323   class class class wbr 4029  cio 5213  cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262
This theorem is referenced by:  nffvmpt1  5565  nffvd  5566  dffn5imf  5612  fvmptssdm  5642  fvmptf  5650  eqfnfv2f  5659  ralrnmpt  5700  rexrnmpt  5701  ffnfvf  5717  funiunfvdmf  5807  dff13f  5813  nfiso  5849  nfrecs  6360  nffrec  6449  cc2  7327  nfseq  10528  seq3f1olemstep  10585  seq3f1olemp  10586  nfsum1  11499  nfsum  11500  fsumrelem  11614  nfcprod1  11697  nfcprod  11698  ctiunctlemfo  12596  ctiunct  12597  cnmpt11  14451  cnmpt21  14459  lgseisenlem2  15187
  Copyright terms: Public domain W3C validator