Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nffv | GIF version |
Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nffv.1 | ⊢ Ⅎ𝑥𝐹 |
nffv.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nffv | ⊢ Ⅎ𝑥(𝐹‘𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 5196 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) | |
2 | nffv.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nffv.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
4 | nfcv 2308 | . . . 4 ⊢ Ⅎ𝑥𝑦 | |
5 | 2, 3, 4 | nfbr 4028 | . . 3 ⊢ Ⅎ𝑥 𝐴𝐹𝑦 |
6 | 5 | nfiotaw 5157 | . 2 ⊢ Ⅎ𝑥(℩𝑦𝐴𝐹𝑦) |
7 | 1, 6 | nfcxfr 2305 | 1 ⊢ Ⅎ𝑥(𝐹‘𝐴) |
Colors of variables: wff set class |
Syntax hints: Ⅎwnfc 2295 class class class wbr 3982 ℩cio 5151 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 |
This theorem is referenced by: nffvmpt1 5497 nffvd 5498 dffn5imf 5541 fvmptssdm 5570 fvmptf 5578 eqfnfv2f 5587 ralrnmpt 5627 rexrnmpt 5628 ffnfvf 5644 funiunfvdmf 5732 dff13f 5738 nfiso 5774 nfrecs 6275 nffrec 6364 cc2 7208 nfseq 10390 seq3f1olemstep 10436 seq3f1olemp 10437 nfsum1 11297 nfsum 11298 fsumrelem 11412 nfcprod1 11495 nfcprod 11496 ctiunctlemfo 12372 ctiunct 12373 cnmpt11 12923 cnmpt21 12931 |
Copyright terms: Public domain | W3C validator |