ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffv GIF version

Theorem nffv 5569
Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nffv.1 𝑥𝐹
nffv.2 𝑥𝐴
Assertion
Ref Expression
nffv 𝑥(𝐹𝐴)

Proof of Theorem nffv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-fv 5267 . 2 (𝐹𝐴) = (℩𝑦𝐴𝐹𝑦)
2 nffv.2 . . . 4 𝑥𝐴
3 nffv.1 . . . 4 𝑥𝐹
4 nfcv 2339 . . . 4 𝑥𝑦
52, 3, 4nfbr 4080 . . 3 𝑥 𝐴𝐹𝑦
65nfiotaw 5224 . 2 𝑥(℩𝑦𝐴𝐹𝑦)
71, 6nfcxfr 2336 1 𝑥(𝐹𝐴)
Colors of variables: wff set class
Syntax hints:  wnfc 2326   class class class wbr 4034  cio 5218  cfv 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-iota 5220  df-fv 5267
This theorem is referenced by:  nffvmpt1  5570  nffvd  5571  dffn5imf  5617  fvmptssdm  5647  fvmptf  5655  eqfnfv2f  5664  ralrnmpt  5705  rexrnmpt  5706  ffnfvf  5722  funiunfvdmf  5812  dff13f  5818  nfiso  5854  nfrecs  6366  nffrec  6455  cc2  7336  nfseq  10551  seq3f1olemstep  10608  seq3f1olemp  10609  nfsum1  11523  nfsum  11524  fsumrelem  11638  nfcprod1  11721  nfcprod  11722  ctiunctlemfo  12666  ctiunct  12667  cnmpt11  14529  cnmpt21  14537  lgseisenlem2  15322
  Copyright terms: Public domain W3C validator