![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nffv | GIF version |
Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nffv.1 | ⊢ Ⅎ𝑥𝐹 |
nffv.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nffv | ⊢ Ⅎ𝑥(𝐹‘𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 5239 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) | |
2 | nffv.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nffv.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
4 | nfcv 2332 | . . . 4 ⊢ Ⅎ𝑥𝑦 | |
5 | 2, 3, 4 | nfbr 4064 | . . 3 ⊢ Ⅎ𝑥 𝐴𝐹𝑦 |
6 | 5 | nfiotaw 5197 | . 2 ⊢ Ⅎ𝑥(℩𝑦𝐴𝐹𝑦) |
7 | 1, 6 | nfcxfr 2329 | 1 ⊢ Ⅎ𝑥(𝐹‘𝐴) |
Colors of variables: wff set class |
Syntax hints: Ⅎwnfc 2319 class class class wbr 4018 ℩cio 5191 ‘cfv 5231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-rex 2474 df-v 2754 df-un 3148 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-iota 5193 df-fv 5239 |
This theorem is referenced by: nffvmpt1 5541 nffvd 5542 dffn5imf 5587 fvmptssdm 5616 fvmptf 5624 eqfnfv2f 5633 ralrnmpt 5674 rexrnmpt 5675 ffnfvf 5691 funiunfvdmf 5781 dff13f 5787 nfiso 5823 nfrecs 6326 nffrec 6415 cc2 7284 nfseq 10473 seq3f1olemstep 10519 seq3f1olemp 10520 nfsum1 11382 nfsum 11383 fsumrelem 11497 nfcprod1 11580 nfcprod 11581 ctiunctlemfo 12458 ctiunct 12459 cnmpt11 14180 cnmpt21 14188 lgseisenlem2 14848 |
Copyright terms: Public domain | W3C validator |