| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nffv | GIF version | ||
| Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nffv.1 | ⊢ Ⅎ𝑥𝐹 |
| nffv.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nffv | ⊢ Ⅎ𝑥(𝐹‘𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 5267 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) | |
| 2 | nffv.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nffv.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 4 | nfcv 2339 | . . . 4 ⊢ Ⅎ𝑥𝑦 | |
| 5 | 2, 3, 4 | nfbr 4080 | . . 3 ⊢ Ⅎ𝑥 𝐴𝐹𝑦 |
| 6 | 5 | nfiotaw 5224 | . 2 ⊢ Ⅎ𝑥(℩𝑦𝐴𝐹𝑦) |
| 7 | 1, 6 | nfcxfr 2336 | 1 ⊢ Ⅎ𝑥(𝐹‘𝐴) |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnfc 2326 class class class wbr 4034 ℩cio 5218 ‘cfv 5259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 |
| This theorem is referenced by: nffvmpt1 5572 nffvd 5573 dffn5imf 5619 fvmptssdm 5649 fvmptf 5657 eqfnfv2f 5666 ralrnmpt 5707 rexrnmpt 5708 ffnfvf 5724 funiunfvdmf 5814 dff13f 5820 nfiso 5856 nfrecs 6374 nffrec 6463 cc2 7350 nfseq 10566 seq3f1olemstep 10623 seq3f1olemp 10624 nfsum1 11538 nfsum 11539 fsumrelem 11653 nfcprod1 11736 nfcprod 11737 ctiunctlemfo 12681 ctiunct 12682 prdsbas3 12989 cnmpt11 14603 cnmpt21 14611 lgseisenlem2 15396 |
| Copyright terms: Public domain | W3C validator |