ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffv GIF version

Theorem nffv 5506
Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nffv.1 𝑥𝐹
nffv.2 𝑥𝐴
Assertion
Ref Expression
nffv 𝑥(𝐹𝐴)

Proof of Theorem nffv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-fv 5206 . 2 (𝐹𝐴) = (℩𝑦𝐴𝐹𝑦)
2 nffv.2 . . . 4 𝑥𝐴
3 nffv.1 . . . 4 𝑥𝐹
4 nfcv 2312 . . . 4 𝑥𝑦
52, 3, 4nfbr 4035 . . 3 𝑥 𝐴𝐹𝑦
65nfiotaw 5164 . 2 𝑥(℩𝑦𝐴𝐹𝑦)
71, 6nfcxfr 2309 1 𝑥(𝐹𝐴)
Colors of variables: wff set class
Syntax hints:  wnfc 2299   class class class wbr 3989  cio 5158  cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206
This theorem is referenced by:  nffvmpt1  5507  nffvd  5508  dffn5imf  5551  fvmptssdm  5580  fvmptf  5588  eqfnfv2f  5597  ralrnmpt  5638  rexrnmpt  5639  ffnfvf  5655  funiunfvdmf  5743  dff13f  5749  nfiso  5785  nfrecs  6286  nffrec  6375  cc2  7229  nfseq  10411  seq3f1olemstep  10457  seq3f1olemp  10458  nfsum1  11319  nfsum  11320  fsumrelem  11434  nfcprod1  11517  nfcprod  11518  ctiunctlemfo  12394  ctiunct  12395  cnmpt11  13077  cnmpt21  13085
  Copyright terms: Public domain W3C validator