ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffv GIF version

Theorem nffv 5568
Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nffv.1 𝑥𝐹
nffv.2 𝑥𝐴
Assertion
Ref Expression
nffv 𝑥(𝐹𝐴)

Proof of Theorem nffv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-fv 5266 . 2 (𝐹𝐴) = (℩𝑦𝐴𝐹𝑦)
2 nffv.2 . . . 4 𝑥𝐴
3 nffv.1 . . . 4 𝑥𝐹
4 nfcv 2339 . . . 4 𝑥𝑦
52, 3, 4nfbr 4079 . . 3 𝑥 𝐴𝐹𝑦
65nfiotaw 5223 . 2 𝑥(℩𝑦𝐴𝐹𝑦)
71, 6nfcxfr 2336 1 𝑥(𝐹𝐴)
Colors of variables: wff set class
Syntax hints:  wnfc 2326   class class class wbr 4033  cio 5217  cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266
This theorem is referenced by:  nffvmpt1  5569  nffvd  5570  dffn5imf  5616  fvmptssdm  5646  fvmptf  5654  eqfnfv2f  5663  ralrnmpt  5704  rexrnmpt  5705  ffnfvf  5721  funiunfvdmf  5811  dff13f  5817  nfiso  5853  nfrecs  6365  nffrec  6454  cc2  7334  nfseq  10549  seq3f1olemstep  10606  seq3f1olemp  10607  nfsum1  11521  nfsum  11522  fsumrelem  11636  nfcprod1  11719  nfcprod  11720  ctiunctlemfo  12656  ctiunct  12657  cnmpt11  14519  cnmpt21  14527  lgseisenlem2  15312
  Copyright terms: Public domain W3C validator