ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffv GIF version

Theorem nffv 5565
Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nffv.1 𝑥𝐹
nffv.2 𝑥𝐴
Assertion
Ref Expression
nffv 𝑥(𝐹𝐴)

Proof of Theorem nffv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-fv 5263 . 2 (𝐹𝐴) = (℩𝑦𝐴𝐹𝑦)
2 nffv.2 . . . 4 𝑥𝐴
3 nffv.1 . . . 4 𝑥𝐹
4 nfcv 2336 . . . 4 𝑥𝑦
52, 3, 4nfbr 4076 . . 3 𝑥 𝐴𝐹𝑦
65nfiotaw 5220 . 2 𝑥(℩𝑦𝐴𝐹𝑦)
71, 6nfcxfr 2333 1 𝑥(𝐹𝐴)
Colors of variables: wff set class
Syntax hints:  wnfc 2323   class class class wbr 4030  cio 5214  cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3158  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-iota 5216  df-fv 5263
This theorem is referenced by:  nffvmpt1  5566  nffvd  5567  dffn5imf  5613  fvmptssdm  5643  fvmptf  5651  eqfnfv2f  5660  ralrnmpt  5701  rexrnmpt  5702  ffnfvf  5718  funiunfvdmf  5808  dff13f  5814  nfiso  5850  nfrecs  6362  nffrec  6451  cc2  7329  nfseq  10531  seq3f1olemstep  10588  seq3f1olemp  10589  nfsum1  11502  nfsum  11503  fsumrelem  11617  nfcprod1  11700  nfcprod  11701  ctiunctlemfo  12599  ctiunct  12600  cnmpt11  14462  cnmpt21  14470  lgseisenlem2  15228
  Copyright terms: Public domain W3C validator