ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffv GIF version

Theorem nffv 5636
Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nffv.1 𝑥𝐹
nffv.2 𝑥𝐴
Assertion
Ref Expression
nffv 𝑥(𝐹𝐴)

Proof of Theorem nffv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-fv 5325 . 2 (𝐹𝐴) = (℩𝑦𝐴𝐹𝑦)
2 nffv.2 . . . 4 𝑥𝐴
3 nffv.1 . . . 4 𝑥𝐹
4 nfcv 2372 . . . 4 𝑥𝑦
52, 3, 4nfbr 4129 . . 3 𝑥 𝐴𝐹𝑦
65nfiotaw 5281 . 2 𝑥(℩𝑦𝐴𝐹𝑦)
71, 6nfcxfr 2369 1 𝑥(𝐹𝐴)
Colors of variables: wff set class
Syntax hints:  wnfc 2359   class class class wbr 4082  cio 5275  cfv 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-iota 5277  df-fv 5325
This theorem is referenced by:  nffvmpt1  5637  nffvd  5638  dffn5imf  5688  fvmptssdm  5718  fvmptf  5726  eqfnfv2f  5735  ralrnmpt  5776  rexrnmpt  5777  ffnfvf  5793  funiunfvdmf  5887  dff13f  5893  nfiso  5929  nfrecs  6451  nffrec  6540  cc2  7449  nfseq  10674  seq3f1olemstep  10731  seq3f1olemp  10732  nfsum1  11862  nfsum  11863  fsumrelem  11977  nfcprod1  12060  nfcprod  12061  ctiunctlemfo  13005  ctiunct  13006  prdsbas3  13315  cnmpt11  14951  cnmpt21  14959  lgseisenlem2  15744
  Copyright terms: Public domain W3C validator