ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffv GIF version

Theorem nffv 5496
Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nffv.1 𝑥𝐹
nffv.2 𝑥𝐴
Assertion
Ref Expression
nffv 𝑥(𝐹𝐴)

Proof of Theorem nffv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-fv 5196 . 2 (𝐹𝐴) = (℩𝑦𝐴𝐹𝑦)
2 nffv.2 . . . 4 𝑥𝐴
3 nffv.1 . . . 4 𝑥𝐹
4 nfcv 2308 . . . 4 𝑥𝑦
52, 3, 4nfbr 4028 . . 3 𝑥 𝐴𝐹𝑦
65nfiotaw 5157 . 2 𝑥(℩𝑦𝐴𝐹𝑦)
71, 6nfcxfr 2305 1 𝑥(𝐹𝐴)
Colors of variables: wff set class
Syntax hints:  wnfc 2295   class class class wbr 3982  cio 5151  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196
This theorem is referenced by:  nffvmpt1  5497  nffvd  5498  dffn5imf  5541  fvmptssdm  5570  fvmptf  5578  eqfnfv2f  5587  ralrnmpt  5627  rexrnmpt  5628  ffnfvf  5644  funiunfvdmf  5732  dff13f  5738  nfiso  5774  nfrecs  6275  nffrec  6364  cc2  7208  nfseq  10390  seq3f1olemstep  10436  seq3f1olemp  10437  nfsum1  11297  nfsum  11298  fsumrelem  11412  nfcprod1  11495  nfcprod  11496  ctiunctlemfo  12372  ctiunct  12373  cnmpt11  12923  cnmpt21  12931
  Copyright terms: Public domain W3C validator