ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffv GIF version

Theorem nffv 5585
Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nffv.1 𝑥𝐹
nffv.2 𝑥𝐴
Assertion
Ref Expression
nffv 𝑥(𝐹𝐴)

Proof of Theorem nffv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-fv 5278 . 2 (𝐹𝐴) = (℩𝑦𝐴𝐹𝑦)
2 nffv.2 . . . 4 𝑥𝐴
3 nffv.1 . . . 4 𝑥𝐹
4 nfcv 2347 . . . 4 𝑥𝑦
52, 3, 4nfbr 4089 . . 3 𝑥 𝐴𝐹𝑦
65nfiotaw 5235 . 2 𝑥(℩𝑦𝐴𝐹𝑦)
71, 6nfcxfr 2344 1 𝑥(𝐹𝐴)
Colors of variables: wff set class
Syntax hints:  wnfc 2334   class class class wbr 4043  cio 5229  cfv 5270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773  df-un 3169  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-iota 5231  df-fv 5278
This theorem is referenced by:  nffvmpt1  5586  nffvd  5587  dffn5imf  5633  fvmptssdm  5663  fvmptf  5671  eqfnfv2f  5680  ralrnmpt  5721  rexrnmpt  5722  ffnfvf  5738  funiunfvdmf  5832  dff13f  5838  nfiso  5874  nfrecs  6392  nffrec  6481  cc2  7378  nfseq  10600  seq3f1olemstep  10657  seq3f1olemp  10658  nfsum1  11609  nfsum  11610  fsumrelem  11724  nfcprod1  11807  nfcprod  11808  ctiunctlemfo  12752  ctiunct  12753  prdsbas3  13061  cnmpt11  14697  cnmpt21  14705  lgseisenlem2  15490
  Copyright terms: Public domain W3C validator