Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nffv | GIF version |
Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nffv.1 | ⊢ Ⅎ𝑥𝐹 |
nffv.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nffv | ⊢ Ⅎ𝑥(𝐹‘𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 5206 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) | |
2 | nffv.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nffv.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
4 | nfcv 2312 | . . . 4 ⊢ Ⅎ𝑥𝑦 | |
5 | 2, 3, 4 | nfbr 4035 | . . 3 ⊢ Ⅎ𝑥 𝐴𝐹𝑦 |
6 | 5 | nfiotaw 5164 | . 2 ⊢ Ⅎ𝑥(℩𝑦𝐴𝐹𝑦) |
7 | 1, 6 | nfcxfr 2309 | 1 ⊢ Ⅎ𝑥(𝐹‘𝐴) |
Colors of variables: wff set class |
Syntax hints: Ⅎwnfc 2299 class class class wbr 3989 ℩cio 5158 ‘cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 |
This theorem is referenced by: nffvmpt1 5507 nffvd 5508 dffn5imf 5551 fvmptssdm 5580 fvmptf 5588 eqfnfv2f 5597 ralrnmpt 5638 rexrnmpt 5639 ffnfvf 5655 funiunfvdmf 5743 dff13f 5749 nfiso 5785 nfrecs 6286 nffrec 6375 cc2 7229 nfseq 10411 seq3f1olemstep 10457 seq3f1olemp 10458 nfsum1 11319 nfsum 11320 fsumrelem 11434 nfcprod1 11517 nfcprod 11518 ctiunctlemfo 12394 ctiunct 12395 cnmpt11 13077 cnmpt21 13085 |
Copyright terms: Public domain | W3C validator |