| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nffv | GIF version | ||
| Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| nffv.1 | ⊢ Ⅎ𝑥𝐹 | 
| nffv.2 | ⊢ Ⅎ𝑥𝐴 | 
| Ref | Expression | 
|---|---|
| nffv | ⊢ Ⅎ𝑥(𝐹‘𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-fv 5266 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) | |
| 2 | nffv.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nffv.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 4 | nfcv 2339 | . . . 4 ⊢ Ⅎ𝑥𝑦 | |
| 5 | 2, 3, 4 | nfbr 4079 | . . 3 ⊢ Ⅎ𝑥 𝐴𝐹𝑦 | 
| 6 | 5 | nfiotaw 5223 | . 2 ⊢ Ⅎ𝑥(℩𝑦𝐴𝐹𝑦) | 
| 7 | 1, 6 | nfcxfr 2336 | 1 ⊢ Ⅎ𝑥(𝐹‘𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: Ⅎwnfc 2326 class class class wbr 4033 ℩cio 5217 ‘cfv 5258 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 | 
| This theorem is referenced by: nffvmpt1 5569 nffvd 5570 dffn5imf 5616 fvmptssdm 5646 fvmptf 5654 eqfnfv2f 5663 ralrnmpt 5704 rexrnmpt 5705 ffnfvf 5721 funiunfvdmf 5811 dff13f 5817 nfiso 5853 nfrecs 6365 nffrec 6454 cc2 7334 nfseq 10549 seq3f1olemstep 10606 seq3f1olemp 10607 nfsum1 11521 nfsum 11522 fsumrelem 11636 nfcprod1 11719 nfcprod 11720 ctiunctlemfo 12656 ctiunct 12657 cnmpt11 14519 cnmpt21 14527 lgseisenlem2 15312 | 
| Copyright terms: Public domain | W3C validator |