| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nffv | GIF version | ||
| Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nffv.1 | ⊢ Ⅎ𝑥𝐹 |
| nffv.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nffv | ⊢ Ⅎ𝑥(𝐹‘𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 5288 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) | |
| 2 | nffv.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nffv.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 4 | nfcv 2349 | . . . 4 ⊢ Ⅎ𝑥𝑦 | |
| 5 | 2, 3, 4 | nfbr 4098 | . . 3 ⊢ Ⅎ𝑥 𝐴𝐹𝑦 |
| 6 | 5 | nfiotaw 5245 | . 2 ⊢ Ⅎ𝑥(℩𝑦𝐴𝐹𝑦) |
| 7 | 1, 6 | nfcxfr 2346 | 1 ⊢ Ⅎ𝑥(𝐹‘𝐴) |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnfc 2336 class class class wbr 4051 ℩cio 5239 ‘cfv 5280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-iota 5241 df-fv 5288 |
| This theorem is referenced by: nffvmpt1 5600 nffvd 5601 dffn5imf 5647 fvmptssdm 5677 fvmptf 5685 eqfnfv2f 5694 ralrnmpt 5735 rexrnmpt 5736 ffnfvf 5752 funiunfvdmf 5846 dff13f 5852 nfiso 5888 nfrecs 6406 nffrec 6495 cc2 7399 nfseq 10624 seq3f1olemstep 10681 seq3f1olemp 10682 nfsum1 11742 nfsum 11743 fsumrelem 11857 nfcprod1 11940 nfcprod 11941 ctiunctlemfo 12885 ctiunct 12886 prdsbas3 13194 cnmpt11 14830 cnmpt21 14838 lgseisenlem2 15623 |
| Copyright terms: Public domain | W3C validator |