| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nffv | GIF version | ||
| Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nffv.1 | ⊢ Ⅎ𝑥𝐹 |
| nffv.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nffv | ⊢ Ⅎ𝑥(𝐹‘𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 5267 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) | |
| 2 | nffv.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nffv.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 4 | nfcv 2339 | . . . 4 ⊢ Ⅎ𝑥𝑦 | |
| 5 | 2, 3, 4 | nfbr 4080 | . . 3 ⊢ Ⅎ𝑥 𝐴𝐹𝑦 |
| 6 | 5 | nfiotaw 5224 | . 2 ⊢ Ⅎ𝑥(℩𝑦𝐴𝐹𝑦) |
| 7 | 1, 6 | nfcxfr 2336 | 1 ⊢ Ⅎ𝑥(𝐹‘𝐴) |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnfc 2326 class class class wbr 4034 ℩cio 5218 ‘cfv 5259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 |
| This theorem is referenced by: nffvmpt1 5570 nffvd 5571 dffn5imf 5617 fvmptssdm 5647 fvmptf 5655 eqfnfv2f 5664 ralrnmpt 5705 rexrnmpt 5706 ffnfvf 5722 funiunfvdmf 5812 dff13f 5818 nfiso 5854 nfrecs 6366 nffrec 6455 cc2 7336 nfseq 10551 seq3f1olemstep 10608 seq3f1olemp 10609 nfsum1 11523 nfsum 11524 fsumrelem 11638 nfcprod1 11721 nfcprod 11722 ctiunctlemfo 12666 ctiunct 12667 cnmpt11 14529 cnmpt21 14537 lgseisenlem2 15322 |
| Copyright terms: Public domain | W3C validator |