| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nffv | GIF version | ||
| Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nffv.1 | ⊢ Ⅎ𝑥𝐹 |
| nffv.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nffv | ⊢ Ⅎ𝑥(𝐹‘𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 5325 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) | |
| 2 | nffv.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nffv.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 4 | nfcv 2372 | . . . 4 ⊢ Ⅎ𝑥𝑦 | |
| 5 | 2, 3, 4 | nfbr 4129 | . . 3 ⊢ Ⅎ𝑥 𝐴𝐹𝑦 |
| 6 | 5 | nfiotaw 5281 | . 2 ⊢ Ⅎ𝑥(℩𝑦𝐴𝐹𝑦) |
| 7 | 1, 6 | nfcxfr 2369 | 1 ⊢ Ⅎ𝑥(𝐹‘𝐴) |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnfc 2359 class class class wbr 4082 ℩cio 5275 ‘cfv 5317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 |
| This theorem is referenced by: nffvmpt1 5637 nffvd 5638 dffn5imf 5688 fvmptssdm 5718 fvmptf 5726 eqfnfv2f 5735 ralrnmpt 5776 rexrnmpt 5777 ffnfvf 5793 funiunfvdmf 5887 dff13f 5893 nfiso 5929 nfrecs 6451 nffrec 6540 cc2 7449 nfseq 10674 seq3f1olemstep 10731 seq3f1olemp 10732 nfsum1 11862 nfsum 11863 fsumrelem 11977 nfcprod1 12060 nfcprod 12061 ctiunctlemfo 13005 ctiunct 13006 prdsbas3 13315 cnmpt11 14951 cnmpt21 14959 lgseisenlem2 15744 |
| Copyright terms: Public domain | W3C validator |