| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negeqd | GIF version | ||
| Description: Equality deduction for negatives. (Contributed by NM, 14-May-1999.) |
| Ref | Expression |
|---|---|
| negeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| negeqd | ⊢ (𝜑 → -𝐴 = -𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | negeq 8335 | . 2 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → -𝐴 = -𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 -cneg 8314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 df-neg 8316 |
| This theorem is referenced by: negdi 8399 mulneg2 8538 mulm1 8542 eqord2 8627 mulreim 8747 apneg 8754 divnegap 8849 div2negap 8878 recgt0 8993 infrenegsupex 9785 supminfex 9788 mul2lt0rlt0 9951 ceilqval 10523 ceilid 10532 modqcyc2 10577 monoord2 10703 reneg 11374 imneg 11382 cjcj 11389 cjneg 11396 minmax 11736 minabs 11742 telfsumo2 11973 sinneg 12232 tannegap 12234 sincossq 12254 odd2np1 12379 oexpneg 12383 modgcd 12507 pcneg 12843 mulgval 13654 mulgneg 13672 ivthdec 15312 limcimolemlt 15332 dvrecap 15381 sinperlem 15476 efimpi 15487 ptolemy 15492 lgsneg1 15698 lgseisenlem1 15743 lgseisenlem4 15746 m1lgs 15758 ex-ceil 16048 |
| Copyright terms: Public domain | W3C validator |