Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > negeqd | GIF version |
Description: Equality deduction for negatives. (Contributed by NM, 14-May-1999.) |
Ref | Expression |
---|---|
negeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
negeqd | ⊢ (𝜑 → -𝐴 = -𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | negeq 8091 | . 2 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → -𝐴 = -𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 -cneg 8070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 df-neg 8072 |
This theorem is referenced by: negdi 8155 mulneg2 8294 mulm1 8298 eqord2 8382 mulreim 8502 apneg 8509 divnegap 8602 div2negap 8631 recgt0 8745 infrenegsupex 9532 supminfex 9535 mul2lt0rlt0 9695 ceilqval 10241 ceilid 10250 modqcyc2 10295 monoord2 10412 reneg 10810 imneg 10818 cjcj 10825 cjneg 10832 minmax 11171 minabs 11177 telfsumo2 11408 sinneg 11667 tannegap 11669 sincossq 11689 odd2np1 11810 oexpneg 11814 modgcd 11924 pcneg 12256 ivthdec 13272 limcimolemlt 13283 dvrecap 13327 sinperlem 13379 efimpi 13390 ptolemy 13395 lgsneg1 13576 ex-ceil 13617 |
Copyright terms: Public domain | W3C validator |