| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negeqd | GIF version | ||
| Description: Equality deduction for negatives. (Contributed by NM, 14-May-1999.) |
| Ref | Expression |
|---|---|
| negeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| negeqd | ⊢ (𝜑 → -𝐴 = -𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | negeq 8300 | . 2 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → -𝐴 = -𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 -cneg 8279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-neg 8281 |
| This theorem is referenced by: negdi 8364 mulneg2 8503 mulm1 8507 eqord2 8592 mulreim 8712 apneg 8719 divnegap 8814 div2negap 8843 recgt0 8958 infrenegsupex 9750 supminfex 9753 mul2lt0rlt0 9916 ceilqval 10488 ceilid 10497 modqcyc2 10542 monoord2 10668 reneg 11294 imneg 11302 cjcj 11309 cjneg 11316 minmax 11656 minabs 11662 telfsumo2 11893 sinneg 12152 tannegap 12154 sincossq 12174 odd2np1 12299 oexpneg 12303 modgcd 12427 pcneg 12763 mulgval 13573 mulgneg 13591 ivthdec 15231 limcimolemlt 15251 dvrecap 15300 sinperlem 15395 efimpi 15406 ptolemy 15411 lgsneg1 15617 lgseisenlem1 15662 lgseisenlem4 15665 m1lgs 15677 ex-ceil 15862 |
| Copyright terms: Public domain | W3C validator |