![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > negeqd | GIF version |
Description: Equality deduction for negatives. (Contributed by NM, 14-May-1999.) |
Ref | Expression |
---|---|
negeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
negeqd | ⊢ (𝜑 → -𝐴 = -𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | negeq 8214 | . 2 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → -𝐴 = -𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 -cneg 8193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 df-neg 8195 |
This theorem is referenced by: negdi 8278 mulneg2 8417 mulm1 8421 eqord2 8505 mulreim 8625 apneg 8632 divnegap 8727 div2negap 8756 recgt0 8871 infrenegsupex 9662 supminfex 9665 mul2lt0rlt0 9828 ceilqval 10380 ceilid 10389 modqcyc2 10434 monoord2 10560 reneg 11015 imneg 11023 cjcj 11030 cjneg 11037 minmax 11376 minabs 11382 telfsumo2 11613 sinneg 11872 tannegap 11874 sincossq 11894 odd2np1 12017 oexpneg 12021 modgcd 12131 pcneg 12466 mulgval 13195 mulgneg 13213 ivthdec 14823 limcimolemlt 14843 dvrecap 14892 sinperlem 14984 efimpi 14995 ptolemy 15000 lgsneg1 15182 lgseisenlem1 15227 lgseisenlem4 15230 m1lgs 15242 ex-ceil 15288 |
Copyright terms: Public domain | W3C validator |