| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negeqd | GIF version | ||
| Description: Equality deduction for negatives. (Contributed by NM, 14-May-1999.) |
| Ref | Expression |
|---|---|
| negeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| negeqd | ⊢ (𝜑 → -𝐴 = -𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | negeq 8265 | . 2 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → -𝐴 = -𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 -cneg 8244 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 df-neg 8246 |
| This theorem is referenced by: negdi 8329 mulneg2 8468 mulm1 8472 eqord2 8557 mulreim 8677 apneg 8684 divnegap 8779 div2negap 8808 recgt0 8923 infrenegsupex 9715 supminfex 9718 mul2lt0rlt0 9881 ceilqval 10451 ceilid 10460 modqcyc2 10505 monoord2 10631 reneg 11179 imneg 11187 cjcj 11194 cjneg 11201 minmax 11541 minabs 11547 telfsumo2 11778 sinneg 12037 tannegap 12039 sincossq 12059 odd2np1 12184 oexpneg 12188 modgcd 12312 pcneg 12648 mulgval 13458 mulgneg 13476 ivthdec 15116 limcimolemlt 15136 dvrecap 15185 sinperlem 15280 efimpi 15291 ptolemy 15296 lgsneg1 15502 lgseisenlem1 15547 lgseisenlem4 15550 m1lgs 15562 ex-ceil 15662 |
| Copyright terms: Public domain | W3C validator |