Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > negeqd | GIF version |
Description: Equality deduction for negatives. (Contributed by NM, 14-May-1999.) |
Ref | Expression |
---|---|
negeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
negeqd | ⊢ (𝜑 → -𝐴 = -𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | negeq 8112 | . 2 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → -𝐴 = -𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 -cneg 8091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-neg 8093 |
This theorem is referenced by: negdi 8176 mulneg2 8315 mulm1 8319 eqord2 8403 mulreim 8523 apneg 8530 divnegap 8623 div2negap 8652 recgt0 8766 infrenegsupex 9553 supminfex 9556 mul2lt0rlt0 9716 ceilqval 10262 ceilid 10271 modqcyc2 10316 monoord2 10433 reneg 10832 imneg 10840 cjcj 10847 cjneg 10854 minmax 11193 minabs 11199 telfsumo2 11430 sinneg 11689 tannegap 11691 sincossq 11711 odd2np1 11832 oexpneg 11836 modgcd 11946 pcneg 12278 ivthdec 13416 limcimolemlt 13427 dvrecap 13471 sinperlem 13523 efimpi 13534 ptolemy 13539 lgsneg1 13720 ex-ceil 13761 |
Copyright terms: Public domain | W3C validator |