| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negeqd | GIF version | ||
| Description: Equality deduction for negatives. (Contributed by NM, 14-May-1999.) |
| Ref | Expression |
|---|---|
| negeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| negeqd | ⊢ (𝜑 → -𝐴 = -𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | negeq 8238 | . 2 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → -𝐴 = -𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 -cneg 8217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-neg 8219 |
| This theorem is referenced by: negdi 8302 mulneg2 8441 mulm1 8445 eqord2 8530 mulreim 8650 apneg 8657 divnegap 8752 div2negap 8781 recgt0 8896 infrenegsupex 9687 supminfex 9690 mul2lt0rlt0 9853 ceilqval 10417 ceilid 10426 modqcyc2 10471 monoord2 10597 reneg 11052 imneg 11060 cjcj 11067 cjneg 11074 minmax 11414 minabs 11420 telfsumo2 11651 sinneg 11910 tannegap 11912 sincossq 11932 odd2np1 12057 oexpneg 12061 modgcd 12185 pcneg 12521 mulgval 13330 mulgneg 13348 ivthdec 14988 limcimolemlt 15008 dvrecap 15057 sinperlem 15152 efimpi 15163 ptolemy 15168 lgsneg1 15374 lgseisenlem1 15419 lgseisenlem4 15422 m1lgs 15434 ex-ceil 15480 |
| Copyright terms: Public domain | W3C validator |