| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negeqd | GIF version | ||
| Description: Equality deduction for negatives. (Contributed by NM, 14-May-1999.) |
| Ref | Expression |
|---|---|
| negeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| negeqd | ⊢ (𝜑 → -𝐴 = -𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | negeq 8236 | . 2 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → -𝐴 = -𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 -cneg 8215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-neg 8217 |
| This theorem is referenced by: negdi 8300 mulneg2 8439 mulm1 8443 eqord2 8528 mulreim 8648 apneg 8655 divnegap 8750 div2negap 8779 recgt0 8894 infrenegsupex 9685 supminfex 9688 mul2lt0rlt0 9851 ceilqval 10415 ceilid 10424 modqcyc2 10469 monoord2 10595 reneg 11050 imneg 11058 cjcj 11065 cjneg 11072 minmax 11412 minabs 11418 telfsumo2 11649 sinneg 11908 tannegap 11910 sincossq 11930 odd2np1 12055 oexpneg 12059 modgcd 12183 pcneg 12519 mulgval 13328 mulgneg 13346 ivthdec 14964 limcimolemlt 14984 dvrecap 15033 sinperlem 15128 efimpi 15139 ptolemy 15144 lgsneg1 15350 lgseisenlem1 15395 lgseisenlem4 15398 m1lgs 15410 ex-ceil 15456 |
| Copyright terms: Public domain | W3C validator |