| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negeqd | GIF version | ||
| Description: Equality deduction for negatives. (Contributed by NM, 14-May-1999.) |
| Ref | Expression |
|---|---|
| negeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| negeqd | ⊢ (𝜑 → -𝐴 = -𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | negeq 8219 | . 2 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → -𝐴 = -𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 -cneg 8198 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-neg 8200 |
| This theorem is referenced by: negdi 8283 mulneg2 8422 mulm1 8426 eqord2 8511 mulreim 8631 apneg 8638 divnegap 8733 div2negap 8762 recgt0 8877 infrenegsupex 9668 supminfex 9671 mul2lt0rlt0 9834 ceilqval 10398 ceilid 10407 modqcyc2 10452 monoord2 10578 reneg 11033 imneg 11041 cjcj 11048 cjneg 11055 minmax 11395 minabs 11401 telfsumo2 11632 sinneg 11891 tannegap 11893 sincossq 11913 odd2np1 12038 oexpneg 12042 modgcd 12158 pcneg 12494 mulgval 13252 mulgneg 13270 ivthdec 14880 limcimolemlt 14900 dvrecap 14949 sinperlem 15044 efimpi 15055 ptolemy 15060 lgsneg1 15266 lgseisenlem1 15311 lgseisenlem4 15314 m1lgs 15326 ex-ceil 15372 |
| Copyright terms: Public domain | W3C validator |