![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > negeqd | GIF version |
Description: Equality deduction for negatives. (Contributed by NM, 14-May-1999.) |
Ref | Expression |
---|---|
negeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
negeqd | ⊢ (𝜑 → -𝐴 = -𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | negeq 8212 | . 2 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → -𝐴 = -𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 -cneg 8191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 df-neg 8193 |
This theorem is referenced by: negdi 8276 mulneg2 8415 mulm1 8419 eqord2 8503 mulreim 8623 apneg 8630 divnegap 8725 div2negap 8754 recgt0 8869 infrenegsupex 9659 supminfex 9662 mul2lt0rlt0 9825 ceilqval 10377 ceilid 10386 modqcyc2 10431 monoord2 10557 reneg 11012 imneg 11020 cjcj 11027 cjneg 11034 minmax 11373 minabs 11379 telfsumo2 11610 sinneg 11869 tannegap 11871 sincossq 11891 odd2np1 12014 oexpneg 12018 modgcd 12128 pcneg 12463 mulgval 13192 mulgneg 13210 ivthdec 14798 limcimolemlt 14818 dvrecap 14862 sinperlem 14943 efimpi 14954 ptolemy 14959 lgsneg1 15141 lgseisenlem1 15186 lgseisenlem4 15189 m1lgs 15192 ex-ceil 15218 |
Copyright terms: Public domain | W3C validator |