| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negeqd | GIF version | ||
| Description: Equality deduction for negatives. (Contributed by NM, 14-May-1999.) |
| Ref | Expression |
|---|---|
| negeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| negeqd | ⊢ (𝜑 → -𝐴 = -𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | negeq 8264 | . 2 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → -𝐴 = -𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 -cneg 8243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-iota 5231 df-fv 5278 df-ov 5946 df-neg 8245 |
| This theorem is referenced by: negdi 8328 mulneg2 8467 mulm1 8471 eqord2 8556 mulreim 8676 apneg 8683 divnegap 8778 div2negap 8807 recgt0 8922 infrenegsupex 9714 supminfex 9717 mul2lt0rlt0 9880 ceilqval 10449 ceilid 10458 modqcyc2 10503 monoord2 10629 reneg 11150 imneg 11158 cjcj 11165 cjneg 11172 minmax 11512 minabs 11518 telfsumo2 11749 sinneg 12008 tannegap 12010 sincossq 12030 odd2np1 12155 oexpneg 12159 modgcd 12283 pcneg 12619 mulgval 13429 mulgneg 13447 ivthdec 15087 limcimolemlt 15107 dvrecap 15156 sinperlem 15251 efimpi 15262 ptolemy 15267 lgsneg1 15473 lgseisenlem1 15518 lgseisenlem4 15521 m1lgs 15533 ex-ceil 15624 |
| Copyright terms: Public domain | W3C validator |