ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negeqd GIF version

Theorem negeqd 7828
Description: Equality deduction for negatives. (Contributed by NM, 14-May-1999.)
Hypothesis
Ref Expression
negeqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
negeqd (𝜑 → -𝐴 = -𝐵)

Proof of Theorem negeqd
StepHypRef Expression
1 negeqd.1 . 2 (𝜑𝐴 = 𝐵)
2 negeq 7826 . 2 (𝐴 = 𝐵 → -𝐴 = -𝐵)
31, 2syl 14 1 (𝜑 → -𝐴 = -𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1299  -cneg 7805
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-rex 2381  df-v 2643  df-un 3025  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-iota 5024  df-fv 5067  df-ov 5709  df-neg 7807
This theorem is referenced by:  negdi  7890  mulneg2  8025  mulm1  8029  eqord2  8113  mulreim  8232  apneg  8239  divnegap  8327  div2negap  8356  recgt0  8466  infrenegsupex  9239  supminfex  9242  ceilqval  9920  ceilid  9929  modqcyc2  9974  monoord2  10091  reneg  10481  imneg  10489  cjcj  10496  cjneg  10503  minmax  10840  minabs  10846  telfsumo2  11075  sinneg  11231  tannegap  11233  sincossq  11253  odd2np1  11365  oexpneg  11369  modgcd  11474  limcimolemlt  12513  ex-ceil  12541
  Copyright terms: Public domain W3C validator