ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfima GIF version

Theorem nfima 5038
Description: Bound-variable hypothesis builder for image. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypotheses
Ref Expression
nfima.1 𝑥𝐴
nfima.2 𝑥𝐵
Assertion
Ref Expression
nfima 𝑥(𝐴𝐵)

Proof of Theorem nfima
StepHypRef Expression
1 df-ima 4695 . 2 (𝐴𝐵) = ran (𝐴𝐵)
2 nfima.1 . . . 4 𝑥𝐴
3 nfima.2 . . . 4 𝑥𝐵
42, 3nfres 4969 . . 3 𝑥(𝐴𝐵)
54nfrn 4931 . 2 𝑥ran (𝐴𝐵)
61, 5nfcxfr 2346 1 𝑥(𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wnfc 2336  ran crn 4683  cres 4684  cima 4685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rab 2494  df-v 2775  df-un 3174  df-in 3176  df-sn 3643  df-pr 3644  df-op 3646  df-br 4051  df-opab 4113  df-xp 4688  df-cnv 4690  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695
This theorem is referenced by:  nfimad  5039  csbima12g  5051
  Copyright terms: Public domain W3C validator