| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfima | GIF version | ||
| Description: Bound-variable hypothesis builder for image. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| nfima.1 | ⊢ Ⅎ𝑥𝐴 |
| nfima.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfima | ⊢ Ⅎ𝑥(𝐴 “ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 4731 | . 2 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
| 2 | nfima.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfima.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 4 | 2, 3 | nfres 5006 | . . 3 ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
| 5 | 4 | nfrn 4968 | . 2 ⊢ Ⅎ𝑥ran (𝐴 ↾ 𝐵) |
| 6 | 1, 5 | nfcxfr 2369 | 1 ⊢ Ⅎ𝑥(𝐴 “ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnfc 2359 ran crn 4719 ↾ cres 4720 “ cima 4721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-cnv 4726 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 |
| This theorem is referenced by: nfimad 5076 csbima12g 5088 |
| Copyright terms: Public domain | W3C validator |