ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phplem1 GIF version

Theorem phplem1 6826
Description: Lemma for Pigeonhole Principle. If we join a natural number to itself minus an element, we end up with its successor minus the same element. (Contributed by NM, 25-May-1998.)
Assertion
Ref Expression
phplem1 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (suc 𝐴 ∖ {𝐵}))

Proof of Theorem phplem1
StepHypRef Expression
1 nnord 4594 . . 3 (𝐴 ∈ ω → Ord 𝐴)
2 nordeq 4526 . . . 4 ((Ord 𝐴𝐵𝐴) → 𝐴𝐵)
3 disjsn2 3644 . . . 4 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
42, 3syl 14 . . 3 ((Ord 𝐴𝐵𝐴) → ({𝐴} ∩ {𝐵}) = ∅)
51, 4sylan 281 . 2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ({𝐴} ∩ {𝐵}) = ∅)
6 undif4 3476 . . 3 (({𝐴} ∩ {𝐵}) = ∅ → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (({𝐴} ∪ 𝐴) ∖ {𝐵}))
7 df-suc 4354 . . . . 5 suc 𝐴 = (𝐴 ∪ {𝐴})
87equncomi 3273 . . . 4 suc 𝐴 = ({𝐴} ∪ 𝐴)
98difeq1i 3241 . . 3 (suc 𝐴 ∖ {𝐵}) = (({𝐴} ∪ 𝐴) ∖ {𝐵})
106, 9eqtr4di 2221 . 2 (({𝐴} ∩ {𝐵}) = ∅ → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (suc 𝐴 ∖ {𝐵}))
115, 10syl 14 1 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (suc 𝐴 ∖ {𝐵}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wne 2340  cdif 3118  cun 3119  cin 3120  c0 3414  {csn 3581  Ord word 4345  suc csuc 4348  ωcom 4572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-uni 3795  df-int 3830  df-tr 4086  df-iord 4349  df-on 4351  df-suc 4354  df-iom 4573
This theorem is referenced by:  phplem2  6827
  Copyright terms: Public domain W3C validator