![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordirr | GIF version |
Description: Epsilon irreflexivity of ordinals: no ordinal class is a member of itself. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. The present proof requires ax-setind 4536. If in the definition of ordinals df-iord 4366, we also required that membership be well-founded on any ordinal (see df-frind 4332), then we could prove ordirr 4541 without ax-setind 4536. (Contributed by NM, 2-Jan-1994.) |
Ref | Expression |
---|---|
ordirr | ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 4540 | . 2 ⊢ ¬ 𝐴 ∈ 𝐴 | |
2 | 1 | a1i 9 | 1 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2148 Ord word 4362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-setind 4536 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-v 2739 df-dif 3131 df-sn 3598 |
This theorem is referenced by: onirri 4542 nordeq 4543 ordn2lp 4544 orddisj 4545 onprc 4551 nlimsucg 4565 tfr1onlemsucfn 6340 tfr1onlemsucaccv 6341 tfrcllemsucfn 6353 tfrcllemsucaccv 6354 nntr2 6503 unsnfi 6917 nnnninfeq 7125 nninfisol 7130 addnidpig 7334 frecfzennn 10425 hashinfom 10757 hashennn 10759 hashp1i 10789 ennnfonelemg 12403 ctinfom 12428 |
Copyright terms: Public domain | W3C validator |