| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordirr | GIF version | ||
| Description: Epsilon irreflexivity of ordinals: no ordinal class is a member of itself. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. The present proof requires ax-setind 4629. If in the definition of ordinals df-iord 4457, we also required that membership be well-founded on any ordinal (see df-frind 4423), then we could prove ordirr 4634 without ax-setind 4629. (Contributed by NM, 2-Jan-1994.) |
| Ref | Expression |
|---|---|
| ordirr | ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elirr 4633 | . 2 ⊢ ¬ 𝐴 ∈ 𝐴 | |
| 2 | 1 | a1i 9 | 1 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2200 Ord word 4453 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-v 2801 df-dif 3199 df-sn 3672 |
| This theorem is referenced by: onirri 4635 nordeq 4636 ordn2lp 4637 orddisj 4638 onprc 4644 nlimsucg 4658 tfr1onlemsucfn 6492 tfr1onlemsucaccv 6493 tfrcllemsucfn 6505 tfrcllemsucaccv 6506 nntr2 6657 1ndom2 7034 unsnfi 7089 nnnninfeq 7303 nninfisol 7308 addnidpig 7531 frecfzennn 10656 hashinfom 11008 hashennn 11010 hashp1i 11040 ennnfonelemg 12982 ctinfom 13007 3dom 16381 |
| Copyright terms: Public domain | W3C validator |