![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordirr | GIF version |
Description: Epsilon irreflexivity of ordinals: no ordinal class is a member of itself. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. The present proof requires ax-setind 4537. If in the definition of ordinals df-iord 4367, we also required that membership be well-founded on any ordinal (see df-frind 4333), then we could prove ordirr 4542 without ax-setind 4537. (Contributed by NM, 2-Jan-1994.) |
Ref | Expression |
---|---|
ordirr | ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 4541 | . 2 ⊢ ¬ 𝐴 ∈ 𝐴 | |
2 | 1 | a1i 9 | 1 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2148 Ord word 4363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-setind 4537 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-v 2740 df-dif 3132 df-sn 3599 |
This theorem is referenced by: onirri 4543 nordeq 4544 ordn2lp 4545 orddisj 4546 onprc 4552 nlimsucg 4566 tfr1onlemsucfn 6341 tfr1onlemsucaccv 6342 tfrcllemsucfn 6354 tfrcllemsucaccv 6355 nntr2 6504 unsnfi 6918 nnnninfeq 7126 nninfisol 7131 addnidpig 7335 frecfzennn 10426 hashinfom 10758 hashennn 10760 hashp1i 10790 ennnfonelemg 12404 ctinfom 12429 |
Copyright terms: Public domain | W3C validator |