Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordirr | GIF version |
Description: Epsilon irreflexivity of ordinals: no ordinal class is a member of itself. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. The present proof requires ax-setind 4490. If in the definition of ordinals df-iord 4321, we also required that membership be well-founded on any ordinal (see df-frind 4287), then we could prove ordirr 4495 without ax-setind 4490. (Contributed by NM, 2-Jan-1994.) |
Ref | Expression |
---|---|
ordirr | ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 4494 | . 2 ⊢ ¬ 𝐴 ∈ 𝐴 | |
2 | 1 | a1i 9 | 1 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2125 Ord word 4317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 ax-setind 4490 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-v 2711 df-dif 3100 df-sn 3562 |
This theorem is referenced by: onirri 4496 nordeq 4497 ordn2lp 4498 orddisj 4499 onprc 4505 nlimsucg 4519 tfr1onlemsucfn 6277 tfr1onlemsucaccv 6278 tfrcllemsucfn 6290 tfrcllemsucaccv 6291 nntr2 6439 unsnfi 6852 addnidpig 7235 frecfzennn 10303 hashinfom 10629 hashennn 10631 hashp1i 10661 ennnfonelemg 12083 ctinfom 12108 nninfalllemn 13520 |
Copyright terms: Public domain | W3C validator |