![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordirr | GIF version |
Description: Epsilon irreflexivity of ordinals: no ordinal class is a member of itself. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. The present proof requires ax-setind 4351. If in the definition of ordinals df-iord 4191, we also required that membership be well-founded on any ordinal (see df-frind 4157), then we could prove ordirr 4356 without ax-setind 4351. (Contributed by NM, 2-Jan-1994.) |
Ref | Expression |
---|---|
ordirr | ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 4355 | . 2 ⊢ ¬ 𝐴 ∈ 𝐴 | |
2 | 1 | a1i 9 | 1 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 1438 Ord word 4187 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-setind 4351 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-ral 2364 df-v 2621 df-dif 3001 df-sn 3450 |
This theorem is referenced by: onirri 4357 nordeq 4358 ordn2lp 4359 orddisj 4360 onprc 4366 nlimsucg 4380 tfr1onlemsucfn 6097 tfr1onlemsucaccv 6098 tfrcllemsucfn 6110 tfrcllemsucaccv 6111 unsnfi 6619 addnidpig 6885 frecfzennn 9821 hashinfom 10174 hashennn 10176 hashp1i 10206 nninfalllemn 11781 |
Copyright terms: Public domain | W3C validator |