![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordirr | GIF version |
Description: Epsilon irreflexivity of ordinals: no ordinal class is a member of itself. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. The present proof requires ax-setind 4569. If in the definition of ordinals df-iord 4397, we also required that membership be well-founded on any ordinal (see df-frind 4363), then we could prove ordirr 4574 without ax-setind 4569. (Contributed by NM, 2-Jan-1994.) |
Ref | Expression |
---|---|
ordirr | ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 4573 | . 2 ⊢ ¬ 𝐴 ∈ 𝐴 | |
2 | 1 | a1i 9 | 1 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2164 Ord word 4393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-setind 4569 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-v 2762 df-dif 3155 df-sn 3624 |
This theorem is referenced by: onirri 4575 nordeq 4576 ordn2lp 4577 orddisj 4578 onprc 4584 nlimsucg 4598 tfr1onlemsucfn 6393 tfr1onlemsucaccv 6394 tfrcllemsucfn 6406 tfrcllemsucaccv 6407 nntr2 6556 unsnfi 6975 nnnninfeq 7187 nninfisol 7192 addnidpig 7396 frecfzennn 10497 hashinfom 10849 hashennn 10851 hashp1i 10881 ennnfonelemg 12560 ctinfom 12585 |
Copyright terms: Public domain | W3C validator |