| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordirr | GIF version | ||
| Description: Epsilon irreflexivity of ordinals: no ordinal class is a member of itself. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. The present proof requires ax-setind 4626. If in the definition of ordinals df-iord 4454, we also required that membership be well-founded on any ordinal (see df-frind 4420), then we could prove ordirr 4631 without ax-setind 4626. (Contributed by NM, 2-Jan-1994.) |
| Ref | Expression |
|---|---|
| ordirr | ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elirr 4630 | . 2 ⊢ ¬ 𝐴 ∈ 𝐴 | |
| 2 | 1 | a1i 9 | 1 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2200 Ord word 4450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-setind 4626 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-v 2801 df-dif 3199 df-sn 3672 |
| This theorem is referenced by: onirri 4632 nordeq 4633 ordn2lp 4634 orddisj 4635 onprc 4641 nlimsucg 4655 tfr1onlemsucfn 6476 tfr1onlemsucaccv 6477 tfrcllemsucfn 6489 tfrcllemsucaccv 6490 nntr2 6639 1ndom2 7014 unsnfi 7069 nnnninfeq 7283 nninfisol 7288 addnidpig 7511 frecfzennn 10635 hashinfom 10987 hashennn 10989 hashp1i 11019 ennnfonelemg 12960 ctinfom 12985 |
| Copyright terms: Public domain | W3C validator |