Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordirr | GIF version |
Description: Epsilon irreflexivity of ordinals: no ordinal class is a member of itself. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. The present proof requires ax-setind 4514. If in the definition of ordinals df-iord 4344, we also required that membership be well-founded on any ordinal (see df-frind 4310), then we could prove ordirr 4519 without ax-setind 4514. (Contributed by NM, 2-Jan-1994.) |
Ref | Expression |
---|---|
ordirr | ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 4518 | . 2 ⊢ ¬ 𝐴 ∈ 𝐴 | |
2 | 1 | a1i 9 | 1 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2136 Ord word 4340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-v 2728 df-dif 3118 df-sn 3582 |
This theorem is referenced by: onirri 4520 nordeq 4521 ordn2lp 4522 orddisj 4523 onprc 4529 nlimsucg 4543 tfr1onlemsucfn 6308 tfr1onlemsucaccv 6309 tfrcllemsucfn 6321 tfrcllemsucaccv 6322 nntr2 6471 unsnfi 6884 nnnninfeq 7092 nninfisol 7097 addnidpig 7277 frecfzennn 10361 hashinfom 10691 hashennn 10693 hashp1i 10723 ennnfonelemg 12336 ctinfom 12361 |
Copyright terms: Public domain | W3C validator |