| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordirr | GIF version | ||
| Description: Epsilon irreflexivity of ordinals: no ordinal class is a member of itself. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. The present proof requires ax-setind 4590. If in the definition of ordinals df-iord 4418, we also required that membership be well-founded on any ordinal (see df-frind 4384), then we could prove ordirr 4595 without ax-setind 4590. (Contributed by NM, 2-Jan-1994.) |
| Ref | Expression |
|---|---|
| ordirr | ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elirr 4594 | . 2 ⊢ ¬ 𝐴 ∈ 𝐴 | |
| 2 | 1 | a1i 9 | 1 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2177 Ord word 4414 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-setind 4590 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-v 2775 df-dif 3170 df-sn 3641 |
| This theorem is referenced by: onirri 4596 nordeq 4597 ordn2lp 4598 orddisj 4599 onprc 4605 nlimsucg 4619 tfr1onlemsucfn 6436 tfr1onlemsucaccv 6437 tfrcllemsucfn 6449 tfrcllemsucaccv 6450 nntr2 6599 unsnfi 7028 nnnninfeq 7242 nninfisol 7247 addnidpig 7462 frecfzennn 10584 hashinfom 10936 hashennn 10938 hashp1i 10968 ennnfonelemg 12824 ctinfom 12849 |
| Copyright terms: Public domain | W3C validator |