| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordirr | GIF version | ||
| Description: Epsilon irreflexivity of ordinals: no ordinal class is a member of itself. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. The present proof requires ax-setind 4574. If in the definition of ordinals df-iord 4402, we also required that membership be well-founded on any ordinal (see df-frind 4368), then we could prove ordirr 4579 without ax-setind 4574. (Contributed by NM, 2-Jan-1994.) |
| Ref | Expression |
|---|---|
| ordirr | ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elirr 4578 | . 2 ⊢ ¬ 𝐴 ∈ 𝐴 | |
| 2 | 1 | a1i 9 | 1 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2167 Ord word 4398 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-v 2765 df-dif 3159 df-sn 3629 |
| This theorem is referenced by: onirri 4580 nordeq 4581 ordn2lp 4582 orddisj 4583 onprc 4589 nlimsucg 4603 tfr1onlemsucfn 6407 tfr1onlemsucaccv 6408 tfrcllemsucfn 6420 tfrcllemsucaccv 6421 nntr2 6570 unsnfi 6989 nnnninfeq 7203 nninfisol 7208 addnidpig 7420 frecfzennn 10535 hashinfom 10887 hashennn 10889 hashp1i 10919 ennnfonelemg 12645 ctinfom 12670 |
| Copyright terms: Public domain | W3C validator |