ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnon GIF version

Theorem nnon 4646
Description: A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.)
Assertion
Ref Expression
nnon (𝐴 ∈ ω → 𝐴 ∈ On)

Proof of Theorem nnon
StepHypRef Expression
1 omelon 4645 . 2 ω ∈ On
21oneli 4463 1 (𝐴 ∈ ω → 𝐴 ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  Oncon0 4398  ωcom 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-int 3875  df-tr 4132  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627
This theorem is referenced by:  nnoni  4647  nnord  4648  omsson  4649  nnsucpred  4653  nnpredcl  4659  frecrdg  6466  onasuc  6524  onmsuc  6531  nna0  6532  nnm0  6533  nnasuc  6534  nnmsuc  6535  nnsucelsuc  6549  nnsucsssuc  6550  nntri2or2  6556  nntr2  6561  nnaordi  6566  nnaword1  6571  nnaordex  6586  phpelm  6927  phplem4on  6928  omp1eomlem  7160  finnum  7250  pion  7377  prarloclemlo  7561  nninfctlemfo  12207  ennnfonelemk  12617  pwle2  15643
  Copyright terms: Public domain W3C validator