| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnon | GIF version | ||
| Description: A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.) |
| Ref | Expression |
|---|---|
| nnon | ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omelon 4656 | . 2 ⊢ ω ∈ On | |
| 2 | 1 | oneli 4474 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 Oncon0 4409 ωcom 4637 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-uni 3850 df-int 3885 df-tr 4142 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 |
| This theorem is referenced by: nnoni 4658 nnord 4659 omsson 4660 nnsucpred 4664 nnpredcl 4670 frecrdg 6493 onasuc 6551 onmsuc 6558 nna0 6559 nnm0 6560 nnasuc 6561 nnmsuc 6562 nnsucelsuc 6576 nnsucsssuc 6577 nntri2or2 6583 nntr2 6588 nnaordi 6593 nnaword1 6598 nnaordex 6613 phpelm 6962 phplem4on 6963 omp1eomlem 7195 finnum 7289 pion 7422 prarloclemlo 7606 nninfctlemfo 12303 ennnfonelemk 12713 pwle2 15868 |
| Copyright terms: Public domain | W3C validator |