Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnon | GIF version |
Description: A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.) |
Ref | Expression |
---|---|
nnon | ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omelon 4586 | . 2 ⊢ ω ∈ On | |
2 | 1 | oneli 4406 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 Oncon0 4341 ωcom 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 |
This theorem is referenced by: nnoni 4588 nnord 4589 omsson 4590 nnsucpred 4594 nnpredcl 4600 frecrdg 6376 onasuc 6434 onmsuc 6441 nna0 6442 nnm0 6443 nnasuc 6444 nnmsuc 6445 nnsucelsuc 6459 nnsucsssuc 6460 nntri2or2 6466 nntr2 6471 nnaordi 6476 nnaword1 6481 nnaordex 6495 phpelm 6832 phplem4on 6833 omp1eomlem 7059 finnum 7139 pion 7251 prarloclemlo 7435 ennnfonelemk 12333 pwle2 13888 |
Copyright terms: Public domain | W3C validator |