![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnon | GIF version |
Description: A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.) |
Ref | Expression |
---|---|
nnon | ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omelon 4642 | . 2 ⊢ ω ∈ On | |
2 | 1 | oneli 4460 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 Oncon0 4395 ωcom 4623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-uni 3837 df-int 3872 df-tr 4129 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 |
This theorem is referenced by: nnoni 4644 nnord 4645 omsson 4646 nnsucpred 4650 nnpredcl 4656 frecrdg 6463 onasuc 6521 onmsuc 6528 nna0 6529 nnm0 6530 nnasuc 6531 nnmsuc 6532 nnsucelsuc 6546 nnsucsssuc 6547 nntri2or2 6553 nntr2 6558 nnaordi 6563 nnaword1 6568 nnaordex 6583 phpelm 6924 phplem4on 6925 omp1eomlem 7155 finnum 7245 pion 7372 prarloclemlo 7556 nninfctlemfo 12180 ennnfonelemk 12560 pwle2 15559 |
Copyright terms: Public domain | W3C validator |