Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnon | GIF version |
Description: A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.) |
Ref | Expression |
---|---|
nnon | ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omelon 4602 | . 2 ⊢ ω ∈ On | |
2 | 1 | oneli 4422 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2146 Oncon0 4357 ωcom 4583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-iinf 4581 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-uni 3806 df-int 3841 df-tr 4097 df-iord 4360 df-on 4362 df-suc 4365 df-iom 4584 |
This theorem is referenced by: nnoni 4604 nnord 4605 omsson 4606 nnsucpred 4610 nnpredcl 4616 frecrdg 6399 onasuc 6457 onmsuc 6464 nna0 6465 nnm0 6466 nnasuc 6467 nnmsuc 6468 nnsucelsuc 6482 nnsucsssuc 6483 nntri2or2 6489 nntr2 6494 nnaordi 6499 nnaword1 6504 nnaordex 6519 phpelm 6856 phplem4on 6857 omp1eomlem 7083 finnum 7172 pion 7284 prarloclemlo 7468 ennnfonelemk 12368 pwle2 14308 |
Copyright terms: Public domain | W3C validator |