| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnon | GIF version | ||
| Description: A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.) |
| Ref | Expression |
|---|---|
| nnon | ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omelon 4700 | . 2 ⊢ ω ∈ On | |
| 2 | 1 | oneli 4518 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 Oncon0 4453 ωcom 4681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-int 3923 df-tr 4182 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 |
| This theorem is referenced by: nnoni 4702 nnord 4703 omsson 4704 nnsucpred 4708 nnpredcl 4714 frecrdg 6552 onasuc 6610 onmsuc 6617 nna0 6618 nnm0 6619 nnasuc 6620 nnmsuc 6621 nnsucelsuc 6635 nnsucsssuc 6636 nntri2or2 6642 nntr2 6647 nnaordi 6652 nnaword1 6657 nnaordex 6672 phpelm 7024 phplem4on 7025 omp1eomlem 7257 finnum 7351 pion 7493 prarloclemlo 7677 nninfctlemfo 12556 ennnfonelemk 12966 pwle2 16323 |
| Copyright terms: Public domain | W3C validator |