| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nnon | GIF version | ||
| Description: A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.) | 
| Ref | Expression | 
|---|---|
| nnon | ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | omelon 4645 | . 2 ⊢ ω ∈ On | |
| 2 | 1 | oneli 4463 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∈ wcel 2167 Oncon0 4398 ωcom 4626 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 | 
| This theorem is referenced by: nnoni 4647 nnord 4648 omsson 4649 nnsucpred 4653 nnpredcl 4659 frecrdg 6466 onasuc 6524 onmsuc 6531 nna0 6532 nnm0 6533 nnasuc 6534 nnmsuc 6535 nnsucelsuc 6549 nnsucsssuc 6550 nntri2or2 6556 nntr2 6561 nnaordi 6566 nnaword1 6571 nnaordex 6586 phpelm 6927 phplem4on 6928 omp1eomlem 7160 finnum 7250 pion 7377 prarloclemlo 7561 nninfctlemfo 12207 ennnfonelemk 12617 pwle2 15643 | 
| Copyright terms: Public domain | W3C validator |