![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnon | GIF version |
Description: A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.) |
Ref | Expression |
---|---|
nnon | ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omelon 4641 | . 2 ⊢ ω ∈ On | |
2 | 1 | oneli 4459 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 Oncon0 4394 ωcom 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-int 3871 df-tr 4128 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 |
This theorem is referenced by: nnoni 4643 nnord 4644 omsson 4645 nnsucpred 4649 nnpredcl 4655 frecrdg 6461 onasuc 6519 onmsuc 6526 nna0 6527 nnm0 6528 nnasuc 6529 nnmsuc 6530 nnsucelsuc 6544 nnsucsssuc 6545 nntri2or2 6551 nntr2 6556 nnaordi 6561 nnaword1 6566 nnaordex 6581 phpelm 6922 phplem4on 6923 omp1eomlem 7153 finnum 7243 pion 7370 prarloclemlo 7554 nninfctlemfo 12177 ennnfonelemk 12557 pwle2 15489 |
Copyright terms: Public domain | W3C validator |