| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnon | GIF version | ||
| Description: A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.) |
| Ref | Expression |
|---|---|
| nnon | ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omelon 4665 | . 2 ⊢ ω ∈ On | |
| 2 | 1 | oneli 4483 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 Oncon0 4418 ωcom 4646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-iinf 4644 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-uni 3857 df-int 3892 df-tr 4151 df-iord 4421 df-on 4423 df-suc 4426 df-iom 4647 |
| This theorem is referenced by: nnoni 4667 nnord 4668 omsson 4669 nnsucpred 4673 nnpredcl 4679 frecrdg 6507 onasuc 6565 onmsuc 6572 nna0 6573 nnm0 6574 nnasuc 6575 nnmsuc 6576 nnsucelsuc 6590 nnsucsssuc 6591 nntri2or2 6597 nntr2 6602 nnaordi 6607 nnaword1 6612 nnaordex 6627 phpelm 6978 phplem4on 6979 omp1eomlem 7211 finnum 7305 pion 7443 prarloclemlo 7627 nninfctlemfo 12436 ennnfonelemk 12846 pwle2 16076 |
| Copyright terms: Public domain | W3C validator |