ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnon GIF version

Theorem nnon 4647
Description: A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.)
Assertion
Ref Expression
nnon (𝐴 ∈ ω → 𝐴 ∈ On)

Proof of Theorem nnon
StepHypRef Expression
1 omelon 4646 . 2 ω ∈ On
21oneli 4464 1 (𝐴 ∈ ω → 𝐴 ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  Oncon0 4399  ωcom 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-uni 3841  df-int 3876  df-tr 4133  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628
This theorem is referenced by:  nnoni  4648  nnord  4649  omsson  4650  nnsucpred  4654  nnpredcl  4660  frecrdg  6475  onasuc  6533  onmsuc  6540  nna0  6541  nnm0  6542  nnasuc  6543  nnmsuc  6544  nnsucelsuc  6558  nnsucsssuc  6559  nntri2or2  6565  nntr2  6570  nnaordi  6575  nnaword1  6580  nnaordex  6595  phpelm  6936  phplem4on  6937  omp1eomlem  7169  finnum  7261  pion  7394  prarloclemlo  7578  nninfctlemfo  12232  ennnfonelemk  12642  pwle2  15729
  Copyright terms: Public domain W3C validator