ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onelon GIF version

Theorem onelon 4362
Description: An element of an ordinal number is an ordinal number. Theorem 2.2(iii) of [BellMachover] p. 469. (Contributed by NM, 26-Oct-2003.)
Assertion
Ref Expression
onelon ((𝐴 ∈ On ∧ 𝐵𝐴) → 𝐵 ∈ On)

Proof of Theorem onelon
StepHypRef Expression
1 eloni 4353 . 2 (𝐴 ∈ On → Ord 𝐴)
2 ordelon 4361 . 2 ((Ord 𝐴𝐵𝐴) → 𝐵 ∈ On)
31, 2sylan 281 1 ((𝐴 ∈ On ∧ 𝐵𝐴) → 𝐵 ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2136  Ord word 4340  Oncon0 4341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-in 3122  df-ss 3129  df-uni 3790  df-tr 4081  df-iord 4344  df-on 4346
This theorem is referenced by:  oneli  4406  ssorduni  4464  unon  4488  tfrlemibacc  6294  tfrlemibxssdm  6295  tfrlemibfn  6296  tfrexlem  6302  tfr1onlemsucaccv  6309  tfrcllemsucaccv  6322  sucinc2  6414  oav2  6431  omv2  6433
  Copyright terms: Public domain W3C validator