ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onelon GIF version

Theorem onelon 4435
Description: An element of an ordinal number is an ordinal number. Theorem 2.2(iii) of [BellMachover] p. 469. (Contributed by NM, 26-Oct-2003.)
Assertion
Ref Expression
onelon ((𝐴 ∈ On ∧ 𝐵𝐴) → 𝐵 ∈ On)

Proof of Theorem onelon
StepHypRef Expression
1 eloni 4426 . 2 (𝐴 ∈ On → Ord 𝐴)
2 ordelon 4434 . 2 ((Ord 𝐴𝐵𝐴) → 𝐵 ∈ On)
31, 2sylan 283 1 ((𝐴 ∈ On ∧ 𝐵𝐴) → 𝐵 ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2177  Ord word 4413  Oncon0 4414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-in 3173  df-ss 3180  df-uni 3853  df-tr 4147  df-iord 4417  df-on 4419
This theorem is referenced by:  oneli  4479  ssorduni  4539  unon  4563  tfrlemibacc  6419  tfrlemibxssdm  6420  tfrlemibfn  6421  tfrexlem  6427  tfr1onlemsucaccv  6434  tfrcllemsucaccv  6447  sucinc2  6539  oav2  6556  omv2  6558
  Copyright terms: Public domain W3C validator