ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordelsuc GIF version

Theorem ordelsuc 4571
Description: A set belongs to an ordinal iff its successor is a subset of the ordinal. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 29-Nov-2003.)
Assertion
Ref Expression
ordelsuc ((𝐴𝐶 ∧ Ord 𝐵) → (𝐴𝐵 ↔ suc 𝐴𝐵))

Proof of Theorem ordelsuc
StepHypRef Expression
1 ordsucss 4570 . . 3 (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
21adantl 277 . 2 ((𝐴𝐶 ∧ Ord 𝐵) → (𝐴𝐵 → suc 𝐴𝐵))
3 sucssel 4489 . . 3 (𝐴𝐶 → (suc 𝐴𝐵𝐴𝐵))
43adantr 276 . 2 ((𝐴𝐶 ∧ Ord 𝐵) → (suc 𝐴𝐵𝐴𝐵))
52, 4impbid 129 1 ((𝐴𝐶 ∧ Ord 𝐵) → (𝐴𝐵 ↔ suc 𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2178  wss 3174  Ord word 4427  suc csuc 4430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-uni 3865  df-tr 4159  df-iord 4431  df-suc 4436
This theorem is referenced by:  onsucssi  4572  onsucmin  4573  onsucelsucr  4574  onsucsssucr  4575  onsucsssucexmid  4593  frecsuclem  6515  ordgt0ge1  6544  nnsucsssuc  6601  ennnfonelemk  12886  nninfsellemeq  16153
  Copyright terms: Public domain W3C validator