ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordelsuc GIF version

Theorem ordelsuc 4541
Description: A set belongs to an ordinal iff its successor is a subset of the ordinal. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 29-Nov-2003.)
Assertion
Ref Expression
ordelsuc ((𝐴𝐶 ∧ Ord 𝐵) → (𝐴𝐵 ↔ suc 𝐴𝐵))

Proof of Theorem ordelsuc
StepHypRef Expression
1 ordsucss 4540 . . 3 (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
21adantl 277 . 2 ((𝐴𝐶 ∧ Ord 𝐵) → (𝐴𝐵 → suc 𝐴𝐵))
3 sucssel 4459 . . 3 (𝐴𝐶 → (suc 𝐴𝐵𝐴𝐵))
43adantr 276 . 2 ((𝐴𝐶 ∧ Ord 𝐵) → (suc 𝐴𝐵𝐴𝐵))
52, 4impbid 129 1 ((𝐴𝐶 ∧ Ord 𝐵) → (𝐴𝐵 ↔ suc 𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2167  wss 3157  Ord word 4397  suc csuc 4400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-uni 3840  df-tr 4132  df-iord 4401  df-suc 4406
This theorem is referenced by:  onsucssi  4542  onsucmin  4543  onsucelsucr  4544  onsucsssucr  4545  onsucsssucexmid  4563  frecsuclem  6464  ordgt0ge1  6493  nnsucsssuc  6550  ennnfonelemk  12617  nninfsellemeq  15658
  Copyright terms: Public domain W3C validator