ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordelsuc GIF version

Theorem ordelsuc 4489
Description: A set belongs to an ordinal iff its successor is a subset of the ordinal. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 29-Nov-2003.)
Assertion
Ref Expression
ordelsuc ((𝐴𝐶 ∧ Ord 𝐵) → (𝐴𝐵 ↔ suc 𝐴𝐵))

Proof of Theorem ordelsuc
StepHypRef Expression
1 ordsucss 4488 . . 3 (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
21adantl 275 . 2 ((𝐴𝐶 ∧ Ord 𝐵) → (𝐴𝐵 → suc 𝐴𝐵))
3 sucssel 4409 . . 3 (𝐴𝐶 → (suc 𝐴𝐵𝐴𝐵))
43adantr 274 . 2 ((𝐴𝐶 ∧ Ord 𝐵) → (suc 𝐴𝐵𝐴𝐵))
52, 4impbid 128 1 ((𝐴𝐶 ∧ Ord 𝐵) → (𝐴𝐵 ↔ suc 𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 2141  wss 3121  Ord word 4347  suc csuc 4350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-uni 3797  df-tr 4088  df-iord 4351  df-suc 4356
This theorem is referenced by:  onsucssi  4490  onsucmin  4491  onsucelsucr  4492  onsucsssucr  4493  onsucsssucexmid  4511  frecsuclem  6385  ordgt0ge1  6414  nnsucsssuc  6471  ennnfonelemk  12355  nninfsellemeq  14047
  Copyright terms: Public domain W3C validator