ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucmin GIF version

Theorem onsucmin 4361
Description: The successor of an ordinal number is the smallest larger ordinal number. (Contributed by NM, 28-Nov-2003.)
Assertion
Ref Expression
onsucmin (𝐴 ∈ On → suc 𝐴 = {𝑥 ∈ On ∣ 𝐴𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem onsucmin
StepHypRef Expression
1 eloni 4235 . . . . 5 (𝑥 ∈ On → Ord 𝑥)
2 ordelsuc 4359 . . . . 5 ((𝐴 ∈ On ∧ Ord 𝑥) → (𝐴𝑥 ↔ suc 𝐴𝑥))
31, 2sylan2 282 . . . 4 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴𝑥 ↔ suc 𝐴𝑥))
43rabbidva 2629 . . 3 (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝐴𝑥} = {𝑥 ∈ On ∣ suc 𝐴𝑥})
54inteqd 3723 . 2 (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝐴𝑥} = {𝑥 ∈ On ∣ suc 𝐴𝑥})
6 sucelon 4357 . . 3 (𝐴 ∈ On ↔ suc 𝐴 ∈ On)
7 intmin 3738 . . 3 (suc 𝐴 ∈ On → {𝑥 ∈ On ∣ suc 𝐴𝑥} = suc 𝐴)
86, 7sylbi 120 . 2 (𝐴 ∈ On → {𝑥 ∈ On ∣ suc 𝐴𝑥} = suc 𝐴)
95, 8eqtr2d 2133 1 (𝐴 ∈ On → suc 𝐴 = {𝑥 ∈ On ∣ 𝐴𝑥})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1299  wcel 1448  {crab 2379  wss 3021   cint 3718  Ord word 4222  Oncon0 4223  suc csuc 4225
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-rab 2384  df-v 2643  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-uni 3684  df-int 3719  df-tr 3967  df-iord 4226  df-on 4228  df-suc 4231
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator