![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > onsucmin | GIF version |
Description: The successor of an ordinal number is the smallest larger ordinal number. (Contributed by NM, 28-Nov-2003.) |
Ref | Expression |
---|---|
onsucmin | ⊢ (𝐴 ∈ On → suc 𝐴 = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 4377 | . . . . 5 ⊢ (𝑥 ∈ On → Ord 𝑥) | |
2 | ordelsuc 4506 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ Ord 𝑥) → (𝐴 ∈ 𝑥 ↔ suc 𝐴 ⊆ 𝑥)) | |
3 | 1, 2 | sylan2 286 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ∈ 𝑥 ↔ suc 𝐴 ⊆ 𝑥)) |
4 | 3 | rabbidva 2727 | . . 3 ⊢ (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝐴 ∈ 𝑥} = {𝑥 ∈ On ∣ suc 𝐴 ⊆ 𝑥}) |
5 | 4 | inteqd 3851 | . 2 ⊢ (𝐴 ∈ On → ∩ {𝑥 ∈ On ∣ 𝐴 ∈ 𝑥} = ∩ {𝑥 ∈ On ∣ suc 𝐴 ⊆ 𝑥}) |
6 | onsucb 4504 | . . 3 ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) | |
7 | intmin 3866 | . . 3 ⊢ (suc 𝐴 ∈ On → ∩ {𝑥 ∈ On ∣ suc 𝐴 ⊆ 𝑥} = suc 𝐴) | |
8 | 6, 7 | sylbi 121 | . 2 ⊢ (𝐴 ∈ On → ∩ {𝑥 ∈ On ∣ suc 𝐴 ⊆ 𝑥} = suc 𝐴) |
9 | 5, 8 | eqtr2d 2211 | 1 ⊢ (𝐴 ∈ On → suc 𝐴 = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ 𝑥}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ∈ wcel 2148 {crab 2459 ⊆ wss 3131 ∩ cint 3846 Ord word 4364 Oncon0 4365 suc csuc 4367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-uni 3812 df-int 3847 df-tr 4104 df-iord 4368 df-on 4370 df-suc 4373 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |