ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucmin GIF version

Theorem onsucmin 4544
Description: The successor of an ordinal number is the smallest larger ordinal number. (Contributed by NM, 28-Nov-2003.)
Assertion
Ref Expression
onsucmin (𝐴 ∈ On → suc 𝐴 = {𝑥 ∈ On ∣ 𝐴𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem onsucmin
StepHypRef Expression
1 eloni 4411 . . . . 5 (𝑥 ∈ On → Ord 𝑥)
2 ordelsuc 4542 . . . . 5 ((𝐴 ∈ On ∧ Ord 𝑥) → (𝐴𝑥 ↔ suc 𝐴𝑥))
31, 2sylan2 286 . . . 4 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴𝑥 ↔ suc 𝐴𝑥))
43rabbidva 2751 . . 3 (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝐴𝑥} = {𝑥 ∈ On ∣ suc 𝐴𝑥})
54inteqd 3880 . 2 (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝐴𝑥} = {𝑥 ∈ On ∣ suc 𝐴𝑥})
6 onsucb 4540 . . 3 (𝐴 ∈ On ↔ suc 𝐴 ∈ On)
7 intmin 3895 . . 3 (suc 𝐴 ∈ On → {𝑥 ∈ On ∣ suc 𝐴𝑥} = suc 𝐴)
86, 7sylbi 121 . 2 (𝐴 ∈ On → {𝑥 ∈ On ∣ suc 𝐴𝑥} = suc 𝐴)
95, 8eqtr2d 2230 1 (𝐴 ∈ On → suc 𝐴 = {𝑥 ∈ On ∣ 𝐴𝑥})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2167  {crab 2479  wss 3157   cint 3875  Ord word 4398  Oncon0 4399  suc csuc 4401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-uni 3841  df-int 3876  df-tr 4133  df-iord 4402  df-on 4404  df-suc 4407
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator