![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > onsucmin | GIF version |
Description: The successor of an ordinal number is the smallest larger ordinal number. (Contributed by NM, 28-Nov-2003.) |
Ref | Expression |
---|---|
onsucmin | ⊢ (𝐴 ∈ On → suc 𝐴 = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 4235 | . . . . 5 ⊢ (𝑥 ∈ On → Ord 𝑥) | |
2 | ordelsuc 4359 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ Ord 𝑥) → (𝐴 ∈ 𝑥 ↔ suc 𝐴 ⊆ 𝑥)) | |
3 | 1, 2 | sylan2 282 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ∈ 𝑥 ↔ suc 𝐴 ⊆ 𝑥)) |
4 | 3 | rabbidva 2629 | . . 3 ⊢ (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝐴 ∈ 𝑥} = {𝑥 ∈ On ∣ suc 𝐴 ⊆ 𝑥}) |
5 | 4 | inteqd 3723 | . 2 ⊢ (𝐴 ∈ On → ∩ {𝑥 ∈ On ∣ 𝐴 ∈ 𝑥} = ∩ {𝑥 ∈ On ∣ suc 𝐴 ⊆ 𝑥}) |
6 | sucelon 4357 | . . 3 ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) | |
7 | intmin 3738 | . . 3 ⊢ (suc 𝐴 ∈ On → ∩ {𝑥 ∈ On ∣ suc 𝐴 ⊆ 𝑥} = suc 𝐴) | |
8 | 6, 7 | sylbi 120 | . 2 ⊢ (𝐴 ∈ On → ∩ {𝑥 ∈ On ∣ suc 𝐴 ⊆ 𝑥} = suc 𝐴) |
9 | 5, 8 | eqtr2d 2133 | 1 ⊢ (𝐴 ∈ On → suc 𝐴 = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ 𝑥}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1299 ∈ wcel 1448 {crab 2379 ⊆ wss 3021 ∩ cint 3718 Ord word 4222 Oncon0 4223 suc csuc 4225 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 df-rab 2384 df-v 2643 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-uni 3684 df-int 3719 df-tr 3967 df-iord 4226 df-on 4228 df-suc 4231 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |