| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovprc | GIF version | ||
| Description: The value of an operation when the one of the arguments is a proper class. Note: this theorem is dependent on our particular definitions of operation value, function value, and ordered pair. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| ovprc1.1 | ⊢ Rel dom 𝐹 |
| Ref | Expression |
|---|---|
| ovprc | ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 5928 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 2 | opprc 3830 | . . . 4 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = ∅) | |
| 3 | 0ex 4161 | . . . 4 ⊢ ∅ ∈ V | |
| 4 | 2, 3 | eqeltrdi 2287 | . . 3 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 ∈ V) |
| 5 | df-br 4035 | . . . . 5 ⊢ (𝐴dom 𝐹 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ dom 𝐹) | |
| 6 | ovprc1.1 | . . . . . 6 ⊢ Rel dom 𝐹 | |
| 7 | brrelex12 4702 | . . . . . 6 ⊢ ((Rel dom 𝐹 ∧ 𝐴dom 𝐹 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 8 | 6, 7 | mpan 424 | . . . . 5 ⊢ (𝐴dom 𝐹 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 9 | 5, 8 | sylbir 135 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ dom 𝐹 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 10 | 9 | con3i 633 | . . 3 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹) |
| 11 | ndmfvg 5592 | . . 3 ⊢ ((〈𝐴, 𝐵〉 ∈ V ∧ ¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹) → (𝐹‘〈𝐴, 𝐵〉) = ∅) | |
| 12 | 4, 10, 11 | syl2anc 411 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹‘〈𝐴, 𝐵〉) = ∅) |
| 13 | 1, 12 | eqtrid 2241 | 1 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∅c0 3451 〈cop 3626 class class class wbr 4034 dom cdm 4664 Rel wrel 4669 ‘cfv 5259 (class class class)co 5925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-rel 4671 df-dm 4674 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: ovprc1 5962 ovprc2 5963 |
| Copyright terms: Public domain | W3C validator |