ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovprc GIF version

Theorem ovprc 5993
Description: The value of an operation when the one of the arguments is a proper class. Note: this theorem is dependent on our particular definitions of operation value, function value, and ordered pair. (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
ovprc1.1 Rel dom 𝐹
Assertion
Ref Expression
ovprc (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅)

Proof of Theorem ovprc
StepHypRef Expression
1 df-ov 5960 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 opprc 3846 . . . 4 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅)
3 0ex 4179 . . . 4 ∅ ∈ V
42, 3eqeltrdi 2297 . . 3 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ ∈ V)
5 df-br 4052 . . . . 5 (𝐴dom 𝐹 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)
6 ovprc1.1 . . . . . 6 Rel dom 𝐹
7 brrelex12 4721 . . . . . 6 ((Rel dom 𝐹𝐴dom 𝐹 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
86, 7mpan 424 . . . . 5 (𝐴dom 𝐹 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
95, 8sylbir 135 . . . 4 (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
109con3i 633 . . 3 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)
11 ndmfvg 5620 . . 3 ((⟨𝐴, 𝐵⟩ ∈ V ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹) → (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
124, 10, 11syl2anc 411 . 2 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
131, 12eqtrid 2251 1 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1373  wcel 2177  Vcvv 2773  c0 3464  cop 3641   class class class wbr 4051  dom cdm 4683  Rel wrel 4688  cfv 5280  (class class class)co 5957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-xp 4689  df-rel 4690  df-dm 4693  df-iota 5241  df-fv 5288  df-ov 5960
This theorem is referenced by:  ovprc1  5994  ovprc2  5995
  Copyright terms: Public domain W3C validator