ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovprc GIF version

Theorem ovprc 5888
Description: The value of an operation when the one of the arguments is a proper class. Note: this theorem is dependent on our particular definitions of operation value, function value, and ordered pair. (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
ovprc1.1 Rel dom 𝐹
Assertion
Ref Expression
ovprc (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅)

Proof of Theorem ovprc
StepHypRef Expression
1 df-ov 5856 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 opprc 3786 . . . 4 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅)
3 0ex 4116 . . . 4 ∅ ∈ V
42, 3eqeltrdi 2261 . . 3 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ ∈ V)
5 df-br 3990 . . . . 5 (𝐴dom 𝐹 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)
6 ovprc1.1 . . . . . 6 Rel dom 𝐹
7 brrelex12 4649 . . . . . 6 ((Rel dom 𝐹𝐴dom 𝐹 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
86, 7mpan 422 . . . . 5 (𝐴dom 𝐹 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
95, 8sylbir 134 . . . 4 (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
109con3i 627 . . 3 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)
11 ndmfvg 5527 . . 3 ((⟨𝐴, 𝐵⟩ ∈ V ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹) → (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
124, 10, 11syl2anc 409 . 2 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
131, 12eqtrid 2215 1 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1348  wcel 2141  Vcvv 2730  c0 3414  cop 3586   class class class wbr 3989  dom cdm 4611  Rel wrel 4616  cfv 5198  (class class class)co 5853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-dm 4621  df-iota 5160  df-fv 5206  df-ov 5856
This theorem is referenced by:  ovprc1  5889  ovprc2  5890
  Copyright terms: Public domain W3C validator