| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovprc | GIF version | ||
| Description: The value of an operation when the one of the arguments is a proper class. Note: this theorem is dependent on our particular definitions of operation value, function value, and ordered pair. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| ovprc1.1 | ⊢ Rel dom 𝐹 |
| Ref | Expression |
|---|---|
| ovprc | ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 6003 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 2 | opprc 3877 | . . . 4 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = ∅) | |
| 3 | 0ex 4210 | . . . 4 ⊢ ∅ ∈ V | |
| 4 | 2, 3 | eqeltrdi 2320 | . . 3 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 ∈ V) |
| 5 | df-br 4083 | . . . . 5 ⊢ (𝐴dom 𝐹 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ dom 𝐹) | |
| 6 | ovprc1.1 | . . . . . 6 ⊢ Rel dom 𝐹 | |
| 7 | brrelex12 4756 | . . . . . 6 ⊢ ((Rel dom 𝐹 ∧ 𝐴dom 𝐹 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 8 | 6, 7 | mpan 424 | . . . . 5 ⊢ (𝐴dom 𝐹 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 9 | 5, 8 | sylbir 135 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ dom 𝐹 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 10 | 9 | con3i 635 | . . 3 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹) |
| 11 | ndmfvg 5657 | . . 3 ⊢ ((〈𝐴, 𝐵〉 ∈ V ∧ ¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹) → (𝐹‘〈𝐴, 𝐵〉) = ∅) | |
| 12 | 4, 10, 11 | syl2anc 411 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹‘〈𝐴, 𝐵〉) = ∅) |
| 13 | 1, 12 | eqtrid 2274 | 1 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∅c0 3491 〈cop 3669 class class class wbr 4082 dom cdm 4718 Rel wrel 4723 ‘cfv 5317 (class class class)co 6000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-rel 4725 df-dm 4728 df-iota 5277 df-fv 5325 df-ov 6003 |
| This theorem is referenced by: ovprc1 6037 ovprc2 6038 |
| Copyright terms: Public domain | W3C validator |