Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ovprc | GIF version |
Description: The value of an operation when the one of the arguments is a proper class. Note: this theorem is dependent on our particular definitions of operation value, function value, and ordered pair. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
ovprc1.1 | ⊢ Rel dom 𝐹 |
Ref | Expression |
---|---|
ovprc | ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5827 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
2 | opprc 3762 | . . . 4 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = ∅) | |
3 | 0ex 4091 | . . . 4 ⊢ ∅ ∈ V | |
4 | 2, 3 | eqeltrdi 2248 | . . 3 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 ∈ V) |
5 | df-br 3966 | . . . . 5 ⊢ (𝐴dom 𝐹 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ dom 𝐹) | |
6 | ovprc1.1 | . . . . . 6 ⊢ Rel dom 𝐹 | |
7 | brrelex12 4624 | . . . . . 6 ⊢ ((Rel dom 𝐹 ∧ 𝐴dom 𝐹 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
8 | 6, 7 | mpan 421 | . . . . 5 ⊢ (𝐴dom 𝐹 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
9 | 5, 8 | sylbir 134 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ dom 𝐹 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
10 | 9 | con3i 622 | . . 3 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹) |
11 | ndmfvg 5499 | . . 3 ⊢ ((〈𝐴, 𝐵〉 ∈ V ∧ ¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹) → (𝐹‘〈𝐴, 𝐵〉) = ∅) | |
12 | 4, 10, 11 | syl2anc 409 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹‘〈𝐴, 𝐵〉) = ∅) |
13 | 1, 12 | syl5eq 2202 | 1 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 = wceq 1335 ∈ wcel 2128 Vcvv 2712 ∅c0 3394 〈cop 3563 class class class wbr 3965 dom cdm 4586 Rel wrel 4591 ‘cfv 5170 (class class class)co 5824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-xp 4592 df-rel 4593 df-dm 4596 df-iota 5135 df-fv 5178 df-ov 5827 |
This theorem is referenced by: ovprc1 5857 ovprc2 5858 |
Copyright terms: Public domain | W3C validator |