ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposmpo GIF version

Theorem tposmpo 6178
Description: Transposition of a two-argument mapping. (Contributed by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
tposmpo.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
tposmpo tpos 𝐹 = (𝑦𝐵, 𝑥𝐴𝐶)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem tposmpo
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tposmpo.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
2 df-mpo 5779 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
3 ancom 264 . . . . . 6 ((𝑥𝐴𝑦𝐵) ↔ (𝑦𝐵𝑥𝐴))
43anbi1i 453 . . . . 5 (((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑦𝐵𝑥𝐴) ∧ 𝑧 = 𝐶))
54oprabbii 5826 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑦𝐵𝑥𝐴) ∧ 𝑧 = 𝐶)}
61, 2, 53eqtri 2164 . . 3 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑦𝐵𝑥𝐴) ∧ 𝑧 = 𝐶)}
76tposoprab 6177 . 2 tpos 𝐹 = {⟨⟨𝑦, 𝑥⟩, 𝑧⟩ ∣ ((𝑦𝐵𝑥𝐴) ∧ 𝑧 = 𝐶)}
8 df-mpo 5779 . 2 (𝑦𝐵, 𝑥𝐴𝐶) = {⟨⟨𝑦, 𝑥⟩, 𝑧⟩ ∣ ((𝑦𝐵𝑥𝐴) ∧ 𝑧 = 𝐶)}
97, 8eqtr4i 2163 1 tpos 𝐹 = (𝑦𝐵, 𝑥𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1331  wcel 1480  {coprab 5775  cmpo 5776  tpos ctpos 6141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-fv 5131  df-oprab 5778  df-mpo 5779  df-tpos 6142
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator