Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tposmpo | GIF version |
Description: Transposition of a two-argument mapping. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
tposmpo | ⊢ tpos 𝐹 = (𝑦 ∈ 𝐵, 𝑥 ∈ 𝐴 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tposmpo.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | df-mpo 5847 | . . . 4 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
3 | ancom 264 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
4 | 3 | anbi1i 454 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 = 𝐶)) |
5 | 4 | oprabbii 5897 | . . . 4 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 = 𝐶)} |
6 | 1, 2, 5 | 3eqtri 2190 | . . 3 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 = 𝐶)} |
7 | 6 | tposoprab 6248 | . 2 ⊢ tpos 𝐹 = {〈〈𝑦, 𝑥〉, 𝑧〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 = 𝐶)} |
8 | df-mpo 5847 | . 2 ⊢ (𝑦 ∈ 𝐵, 𝑥 ∈ 𝐴 ↦ 𝐶) = {〈〈𝑦, 𝑥〉, 𝑧〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 = 𝐶)} | |
9 | 7, 8 | eqtr4i 2189 | 1 ⊢ tpos 𝐹 = (𝑦 ∈ 𝐵, 𝑥 ∈ 𝐴 ↦ 𝐶) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1343 ∈ wcel 2136 {coprab 5843 ∈ cmpo 5844 tpos ctpos 6212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-oprab 5846 df-mpo 5847 df-tpos 6213 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |