ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposmpo GIF version

Theorem tposmpo 6336
Description: Transposition of a two-argument mapping. (Contributed by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
tposmpo.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
tposmpo tpos 𝐹 = (𝑦𝐵, 𝑥𝐴𝐶)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem tposmpo
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tposmpo.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
2 df-mpo 5924 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
3 ancom 266 . . . . . 6 ((𝑥𝐴𝑦𝐵) ↔ (𝑦𝐵𝑥𝐴))
43anbi1i 458 . . . . 5 (((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑦𝐵𝑥𝐴) ∧ 𝑧 = 𝐶))
54oprabbii 5974 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑦𝐵𝑥𝐴) ∧ 𝑧 = 𝐶)}
61, 2, 53eqtri 2218 . . 3 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑦𝐵𝑥𝐴) ∧ 𝑧 = 𝐶)}
76tposoprab 6335 . 2 tpos 𝐹 = {⟨⟨𝑦, 𝑥⟩, 𝑧⟩ ∣ ((𝑦𝐵𝑥𝐴) ∧ 𝑧 = 𝐶)}
8 df-mpo 5924 . 2 (𝑦𝐵, 𝑥𝐴𝐶) = {⟨⟨𝑦, 𝑥⟩, 𝑧⟩ ∣ ((𝑦𝐵𝑥𝐴) ∧ 𝑧 = 𝐶)}
97, 8eqtr4i 2217 1 tpos 𝐹 = (𝑦𝐵, 𝑥𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wcel 2164  {coprab 5920  cmpo 5921  tpos ctpos 6299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-oprab 5923  df-mpo 5924  df-tpos 6300
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator