![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tposmpo | GIF version |
Description: Transposition of a two-argument mapping. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
tposmpo | ⊢ tpos 𝐹 = (𝑦 ∈ 𝐵, 𝑥 ∈ 𝐴 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tposmpo.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | df-mpo 5924 | . . . 4 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
3 | ancom 266 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
4 | 3 | anbi1i 458 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 = 𝐶)) |
5 | 4 | oprabbii 5974 | . . . 4 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 = 𝐶)} |
6 | 1, 2, 5 | 3eqtri 2218 | . . 3 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 = 𝐶)} |
7 | 6 | tposoprab 6335 | . 2 ⊢ tpos 𝐹 = {〈〈𝑦, 𝑥〉, 𝑧〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 = 𝐶)} |
8 | df-mpo 5924 | . 2 ⊢ (𝑦 ∈ 𝐵, 𝑥 ∈ 𝐴 ↦ 𝐶) = {〈〈𝑦, 𝑥〉, 𝑧〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 = 𝐶)} | |
9 | 7, 8 | eqtr4i 2217 | 1 ⊢ tpos 𝐹 = (𝑦 ∈ 𝐵, 𝑥 ∈ 𝐴 ↦ 𝐶) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2164 {coprab 5920 ∈ cmpo 5921 tpos ctpos 6299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-fv 5263 df-oprab 5923 df-mpo 5924 df-tpos 6300 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |