ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oviec GIF version

Theorem oviec 6619
Description: Express an operation on equivalence classes of ordered pairs in terms of equivalence class of operations on ordered pairs. See iset.mm for additional comments describing the hypotheses. (Unnecessary distinct variable restrictions were removed by David Abernethy, 4-Jun-2013.) (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 4-Jun-2013.)
Hypotheses
Ref Expression
oviec.1 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → 𝐻 ∈ (𝑆 × 𝑆))
oviec.2 (((𝑎𝑆𝑏𝑆) ∧ (𝑔𝑆𝑆)) → 𝐾 ∈ (𝑆 × 𝑆))
oviec.3 (((𝑐𝑆𝑑𝑆) ∧ (𝑡𝑆𝑠𝑆)) → 𝐿 ∈ (𝑆 × 𝑆))
oviec.4 ∈ V
oviec.5 Er (𝑆 × 𝑆)
oviec.7 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ 𝜑))}
oviec.8 (((𝑧 = 𝑎𝑤 = 𝑏) ∧ (𝑣 = 𝑐𝑢 = 𝑑)) → (𝜑𝜓))
oviec.9 (((𝑧 = 𝑔𝑤 = ) ∧ (𝑣 = 𝑡𝑢 = 𝑠)) → (𝜑𝜒))
oviec.10 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝐽))}
oviec.11 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → 𝐽 = 𝐾)
oviec.12 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → 𝐽 = 𝐿)
oviec.13 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝐽 = 𝐻)
oviec.14 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑄𝑦𝑄) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] 𝑦 = [⟨𝑐, 𝑑⟩] ) ∧ 𝑧 = [(⟨𝑎, 𝑏+𝑐, 𝑑⟩)] ))}
oviec.15 𝑄 = ((𝑆 × 𝑆) / )
oviec.16 ((((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆)) ∧ ((𝑔𝑆𝑆) ∧ (𝑡𝑆𝑠𝑆))) → ((𝜓𝜒) → 𝐾 𝐿))
Assertion
Ref Expression
oviec (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ([⟨𝐴, 𝐵⟩] [⟨𝐶, 𝐷⟩] ) = [𝐻] )
Distinct variable groups:   𝑎,𝑏,𝑐,𝑑,𝑓,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐶   𝐷,𝑎,𝑏,𝑐,𝑑,𝑓,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑥,𝐽,𝑦,𝑧   𝑔,𝑎,,𝐴,𝑏,𝑐,𝑑,𝑓,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝜒,𝑢,𝑣,𝑤,𝑧   𝑓,𝐻,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏,𝑐,𝑑,𝑓,𝑔,,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑓,𝐾,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝜓,𝑢,𝑣,𝑤,𝑧   𝑓,𝐿,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦   𝑠,𝑎,𝑡,𝑆,𝑏,𝑐,𝑑,𝑓,𝑔,,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   + ,𝑎,𝑏,𝑐,𝑑,𝑔,,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑎,𝑏,𝑐,𝑑,𝑔,,𝑠,𝑡,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,𝑡,𝑓,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)   𝜓(𝑥,𝑦,𝑡,𝑓,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)   𝜒(𝑥,𝑦,𝑡,𝑓,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)   𝐴(𝑡,𝑠)   𝐵(𝑡,𝑠)   𝐶(𝑡,𝑔,,𝑠)   𝐷(𝑡,𝑔,,𝑠)   + (𝑤,𝑣,𝑢,𝑓)   (𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡,𝑓,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)   𝑄(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡,𝑓,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)   (𝑤,𝑣,𝑢,𝑓)   𝐻(𝑡,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)   𝐽(𝑤,𝑣,𝑢,𝑡,𝑓,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)   𝐾(𝑡,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)   𝐿(𝑡,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem oviec
StepHypRef Expression
1 oviec.4 . . 3 ∈ V
2 oviec.5 . . 3 Er (𝑆 × 𝑆)
3 oviec.16 . . . 4 ((((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆)) ∧ ((𝑔𝑆𝑆) ∧ (𝑡𝑆𝑠𝑆))) → ((𝜓𝜒) → 𝐾 𝐿))
4 oviec.8 . . . . . 6 (((𝑧 = 𝑎𝑤 = 𝑏) ∧ (𝑣 = 𝑐𝑢 = 𝑑)) → (𝜑𝜓))
5 oviec.7 . . . . . 6 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ 𝜑))}
64, 5opbrop 4690 . . . . 5 (((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆)) → (⟨𝑎, 𝑏𝑐, 𝑑⟩ ↔ 𝜓))
7 oviec.9 . . . . . 6 (((𝑧 = 𝑔𝑤 = ) ∧ (𝑣 = 𝑡𝑢 = 𝑠)) → (𝜑𝜒))
87, 5opbrop 4690 . . . . 5 (((𝑔𝑆𝑆) ∧ (𝑡𝑆𝑠𝑆)) → (⟨𝑔, 𝑡, 𝑠⟩ ↔ 𝜒))
96, 8bi2anan9 601 . . . 4 ((((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆)) ∧ ((𝑔𝑆𝑆) ∧ (𝑡𝑆𝑠𝑆))) → ((⟨𝑎, 𝑏𝑐, 𝑑⟩ ∧ ⟨𝑔, 𝑡, 𝑠⟩) ↔ (𝜓𝜒)))
10 oviec.2 . . . . . . 7 (((𝑎𝑆𝑏𝑆) ∧ (𝑔𝑆𝑆)) → 𝐾 ∈ (𝑆 × 𝑆))
11 oviec.11 . . . . . . 7 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → 𝐽 = 𝐾)
12 oviec.10 . . . . . . 7 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝐽))}
1310, 11, 12ovi3 5989 . . . . . 6 (((𝑎𝑆𝑏𝑆) ∧ (𝑔𝑆𝑆)) → (⟨𝑎, 𝑏+𝑔, ⟩) = 𝐾)
14 oviec.3 . . . . . . 7 (((𝑐𝑆𝑑𝑆) ∧ (𝑡𝑆𝑠𝑆)) → 𝐿 ∈ (𝑆 × 𝑆))
15 oviec.12 . . . . . . 7 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → 𝐽 = 𝐿)
1614, 15, 12ovi3 5989 . . . . . 6 (((𝑐𝑆𝑑𝑆) ∧ (𝑡𝑆𝑠𝑆)) → (⟨𝑐, 𝑑+𝑡, 𝑠⟩) = 𝐿)
1713, 16breqan12d 4005 . . . . 5 ((((𝑎𝑆𝑏𝑆) ∧ (𝑔𝑆𝑆)) ∧ ((𝑐𝑆𝑑𝑆) ∧ (𝑡𝑆𝑠𝑆))) → ((⟨𝑎, 𝑏+𝑔, ⟩) (⟨𝑐, 𝑑+𝑡, 𝑠⟩) ↔ 𝐾 𝐿))
1817an4s 583 . . . 4 ((((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆)) ∧ ((𝑔𝑆𝑆) ∧ (𝑡𝑆𝑠𝑆))) → ((⟨𝑎, 𝑏+𝑔, ⟩) (⟨𝑐, 𝑑+𝑡, 𝑠⟩) ↔ 𝐾 𝐿))
193, 9, 183imtr4d 202 . . 3 ((((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆)) ∧ ((𝑔𝑆𝑆) ∧ (𝑡𝑆𝑠𝑆))) → ((⟨𝑎, 𝑏𝑐, 𝑑⟩ ∧ ⟨𝑔, 𝑡, 𝑠⟩) → (⟨𝑎, 𝑏+𝑔, ⟩) (⟨𝑐, 𝑑+𝑡, 𝑠⟩)))
20 oviec.14 . . . 4 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑄𝑦𝑄) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] 𝑦 = [⟨𝑐, 𝑑⟩] ) ∧ 𝑧 = [(⟨𝑎, 𝑏+𝑐, 𝑑⟩)] ))}
21 oviec.15 . . . . . . . 8 𝑄 = ((𝑆 × 𝑆) / )
2221eleq2i 2237 . . . . . . 7 (𝑥𝑄𝑥 ∈ ((𝑆 × 𝑆) / ))
2321eleq2i 2237 . . . . . . 7 (𝑦𝑄𝑦 ∈ ((𝑆 × 𝑆) / ))
2422, 23anbi12i 457 . . . . . 6 ((𝑥𝑄𝑦𝑄) ↔ (𝑥 ∈ ((𝑆 × 𝑆) / ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / )))
2524anbi1i 455 . . . . 5 (((𝑥𝑄𝑦𝑄) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] 𝑦 = [⟨𝑐, 𝑑⟩] ) ∧ 𝑧 = [(⟨𝑎, 𝑏+𝑐, 𝑑⟩)] )) ↔ ((𝑥 ∈ ((𝑆 × 𝑆) / ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / )) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] 𝑦 = [⟨𝑐, 𝑑⟩] ) ∧ 𝑧 = [(⟨𝑎, 𝑏+𝑐, 𝑑⟩)] )))
2625oprabbii 5908 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑄𝑦𝑄) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] 𝑦 = [⟨𝑐, 𝑑⟩] ) ∧ 𝑧 = [(⟨𝑎, 𝑏+𝑐, 𝑑⟩)] ))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((𝑆 × 𝑆) / ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / )) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] 𝑦 = [⟨𝑐, 𝑑⟩] ) ∧ 𝑧 = [(⟨𝑎, 𝑏+𝑐, 𝑑⟩)] ))}
2720, 26eqtri 2191 . . 3 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((𝑆 × 𝑆) / ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / )) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] 𝑦 = [⟨𝑐, 𝑑⟩] ) ∧ 𝑧 = [(⟨𝑎, 𝑏+𝑐, 𝑑⟩)] ))}
281, 2, 19, 27th3q 6618 . 2 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ([⟨𝐴, 𝐵⟩] [⟨𝐶, 𝐷⟩] ) = [(⟨𝐴, 𝐵+𝐶, 𝐷⟩)] )
29 oviec.1 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → 𝐻 ∈ (𝑆 × 𝑆))
30 oviec.13 . . . 4 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝐽 = 𝐻)
3129, 30, 12ovi3 5989 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨𝐴, 𝐵+𝐶, 𝐷⟩) = 𝐻)
3231eceq1d 6549 . 2 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → [(⟨𝐴, 𝐵+𝐶, 𝐷⟩)] = [𝐻] )
3328, 32eqtrd 2203 1 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ([⟨𝐴, 𝐵⟩] [⟨𝐶, 𝐷⟩] ) = [𝐻] )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wex 1485  wcel 2141  Vcvv 2730  cop 3586   class class class wbr 3989  {copab 4049   × cxp 4609  (class class class)co 5853  {coprab 5854   Er wer 6510  [cec 6511   / cqs 6512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fv 5206  df-ov 5856  df-oprab 5857  df-er 6513  df-ec 6515  df-qs 6519
This theorem is referenced by:  addpipqqs  7332  mulpipqqs  7335
  Copyright terms: Public domain W3C validator