ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oviec GIF version

Theorem oviec 6378
Description: Express an operation on equivalence classes of ordered pairs in terms of equivalence class of operations on ordered pairs. See iset.mm for additional comments describing the hypotheses. (Unnecessary distinct variable restrictions were removed by David Abernethy, 4-Jun-2013.) (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 4-Jun-2013.)
Hypotheses
Ref Expression
oviec.1 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → 𝐻 ∈ (𝑆 × 𝑆))
oviec.2 (((𝑎𝑆𝑏𝑆) ∧ (𝑔𝑆𝑆)) → 𝐾 ∈ (𝑆 × 𝑆))
oviec.3 (((𝑐𝑆𝑑𝑆) ∧ (𝑡𝑆𝑠𝑆)) → 𝐿 ∈ (𝑆 × 𝑆))
oviec.4 ∈ V
oviec.5 Er (𝑆 × 𝑆)
oviec.7 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ 𝜑))}
oviec.8 (((𝑧 = 𝑎𝑤 = 𝑏) ∧ (𝑣 = 𝑐𝑢 = 𝑑)) → (𝜑𝜓))
oviec.9 (((𝑧 = 𝑔𝑤 = ) ∧ (𝑣 = 𝑡𝑢 = 𝑠)) → (𝜑𝜒))
oviec.10 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝐽))}
oviec.11 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → 𝐽 = 𝐾)
oviec.12 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → 𝐽 = 𝐿)
oviec.13 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝐽 = 𝐻)
oviec.14 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑄𝑦𝑄) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] 𝑦 = [⟨𝑐, 𝑑⟩] ) ∧ 𝑧 = [(⟨𝑎, 𝑏+𝑐, 𝑑⟩)] ))}
oviec.15 𝑄 = ((𝑆 × 𝑆) / )
oviec.16 ((((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆)) ∧ ((𝑔𝑆𝑆) ∧ (𝑡𝑆𝑠𝑆))) → ((𝜓𝜒) → 𝐾 𝐿))
Assertion
Ref Expression
oviec (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ([⟨𝐴, 𝐵⟩] [⟨𝐶, 𝐷⟩] ) = [𝐻] )
Distinct variable groups:   𝑎,𝑏,𝑐,𝑑,𝑓,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐶   𝐷,𝑎,𝑏,𝑐,𝑑,𝑓,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑥,𝐽,𝑦,𝑧   𝑔,𝑎,,𝐴,𝑏,𝑐,𝑑,𝑓,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝜒,𝑢,𝑣,𝑤,𝑧   𝑓,𝐻,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏,𝑐,𝑑,𝑓,𝑔,,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑓,𝐾,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝜓,𝑢,𝑣,𝑤,𝑧   𝑓,𝐿,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦   𝑠,𝑎,𝑡,𝑆,𝑏,𝑐,𝑑,𝑓,𝑔,,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   + ,𝑎,𝑏,𝑐,𝑑,𝑔,,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑎,𝑏,𝑐,𝑑,𝑔,,𝑠,𝑡,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,𝑡,𝑓,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)   𝜓(𝑥,𝑦,𝑡,𝑓,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)   𝜒(𝑥,𝑦,𝑡,𝑓,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)   𝐴(𝑡,𝑠)   𝐵(𝑡,𝑠)   𝐶(𝑡,𝑔,,𝑠)   𝐷(𝑡,𝑔,,𝑠)   + (𝑤,𝑣,𝑢,𝑓)   (𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡,𝑓,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)   𝑄(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡,𝑓,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)   (𝑤,𝑣,𝑢,𝑓)   𝐻(𝑡,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)   𝐽(𝑤,𝑣,𝑢,𝑡,𝑓,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)   𝐾(𝑡,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)   𝐿(𝑡,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem oviec
StepHypRef Expression
1 oviec.4 . . 3 ∈ V
2 oviec.5 . . 3 Er (𝑆 × 𝑆)
3 oviec.16 . . . 4 ((((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆)) ∧ ((𝑔𝑆𝑆) ∧ (𝑡𝑆𝑠𝑆))) → ((𝜓𝜒) → 𝐾 𝐿))
4 oviec.8 . . . . . 6 (((𝑧 = 𝑎𝑤 = 𝑏) ∧ (𝑣 = 𝑐𝑢 = 𝑑)) → (𝜑𝜓))
5 oviec.7 . . . . . 6 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ 𝜑))}
64, 5opbrop 4505 . . . . 5 (((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆)) → (⟨𝑎, 𝑏𝑐, 𝑑⟩ ↔ 𝜓))
7 oviec.9 . . . . . 6 (((𝑧 = 𝑔𝑤 = ) ∧ (𝑣 = 𝑡𝑢 = 𝑠)) → (𝜑𝜒))
87, 5opbrop 4505 . . . . 5 (((𝑔𝑆𝑆) ∧ (𝑡𝑆𝑠𝑆)) → (⟨𝑔, 𝑡, 𝑠⟩ ↔ 𝜒))
96, 8bi2anan9 573 . . . 4 ((((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆)) ∧ ((𝑔𝑆𝑆) ∧ (𝑡𝑆𝑠𝑆))) → ((⟨𝑎, 𝑏𝑐, 𝑑⟩ ∧ ⟨𝑔, 𝑡, 𝑠⟩) ↔ (𝜓𝜒)))
10 oviec.2 . . . . . . 7 (((𝑎𝑆𝑏𝑆) ∧ (𝑔𝑆𝑆)) → 𝐾 ∈ (𝑆 × 𝑆))
11 oviec.11 . . . . . . 7 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → 𝐽 = 𝐾)
12 oviec.10 . . . . . . 7 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝐽))}
1310, 11, 12ovi3 5763 . . . . . 6 (((𝑎𝑆𝑏𝑆) ∧ (𝑔𝑆𝑆)) → (⟨𝑎, 𝑏+𝑔, ⟩) = 𝐾)
14 oviec.3 . . . . . . 7 (((𝑐𝑆𝑑𝑆) ∧ (𝑡𝑆𝑠𝑆)) → 𝐿 ∈ (𝑆 × 𝑆))
15 oviec.12 . . . . . . 7 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → 𝐽 = 𝐿)
1614, 15, 12ovi3 5763 . . . . . 6 (((𝑐𝑆𝑑𝑆) ∧ (𝑡𝑆𝑠𝑆)) → (⟨𝑐, 𝑑+𝑡, 𝑠⟩) = 𝐿)
1713, 16breqan12d 3852 . . . . 5 ((((𝑎𝑆𝑏𝑆) ∧ (𝑔𝑆𝑆)) ∧ ((𝑐𝑆𝑑𝑆) ∧ (𝑡𝑆𝑠𝑆))) → ((⟨𝑎, 𝑏+𝑔, ⟩) (⟨𝑐, 𝑑+𝑡, 𝑠⟩) ↔ 𝐾 𝐿))
1817an4s 555 . . . 4 ((((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆)) ∧ ((𝑔𝑆𝑆) ∧ (𝑡𝑆𝑠𝑆))) → ((⟨𝑎, 𝑏+𝑔, ⟩) (⟨𝑐, 𝑑+𝑡, 𝑠⟩) ↔ 𝐾 𝐿))
193, 9, 183imtr4d 201 . . 3 ((((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆)) ∧ ((𝑔𝑆𝑆) ∧ (𝑡𝑆𝑠𝑆))) → ((⟨𝑎, 𝑏𝑐, 𝑑⟩ ∧ ⟨𝑔, 𝑡, 𝑠⟩) → (⟨𝑎, 𝑏+𝑔, ⟩) (⟨𝑐, 𝑑+𝑡, 𝑠⟩)))
20 oviec.14 . . . 4 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑄𝑦𝑄) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] 𝑦 = [⟨𝑐, 𝑑⟩] ) ∧ 𝑧 = [(⟨𝑎, 𝑏+𝑐, 𝑑⟩)] ))}
21 oviec.15 . . . . . . . 8 𝑄 = ((𝑆 × 𝑆) / )
2221eleq2i 2154 . . . . . . 7 (𝑥𝑄𝑥 ∈ ((𝑆 × 𝑆) / ))
2321eleq2i 2154 . . . . . . 7 (𝑦𝑄𝑦 ∈ ((𝑆 × 𝑆) / ))
2422, 23anbi12i 448 . . . . . 6 ((𝑥𝑄𝑦𝑄) ↔ (𝑥 ∈ ((𝑆 × 𝑆) / ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / )))
2524anbi1i 446 . . . . 5 (((𝑥𝑄𝑦𝑄) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] 𝑦 = [⟨𝑐, 𝑑⟩] ) ∧ 𝑧 = [(⟨𝑎, 𝑏+𝑐, 𝑑⟩)] )) ↔ ((𝑥 ∈ ((𝑆 × 𝑆) / ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / )) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] 𝑦 = [⟨𝑐, 𝑑⟩] ) ∧ 𝑧 = [(⟨𝑎, 𝑏+𝑐, 𝑑⟩)] )))
2625oprabbii 5686 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑄𝑦𝑄) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] 𝑦 = [⟨𝑐, 𝑑⟩] ) ∧ 𝑧 = [(⟨𝑎, 𝑏+𝑐, 𝑑⟩)] ))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((𝑆 × 𝑆) / ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / )) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] 𝑦 = [⟨𝑐, 𝑑⟩] ) ∧ 𝑧 = [(⟨𝑎, 𝑏+𝑐, 𝑑⟩)] ))}
2720, 26eqtri 2108 . . 3 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((𝑆 × 𝑆) / ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / )) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] 𝑦 = [⟨𝑐, 𝑑⟩] ) ∧ 𝑧 = [(⟨𝑎, 𝑏+𝑐, 𝑑⟩)] ))}
281, 2, 19, 27th3q 6377 . 2 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ([⟨𝐴, 𝐵⟩] [⟨𝐶, 𝐷⟩] ) = [(⟨𝐴, 𝐵+𝐶, 𝐷⟩)] )
29 oviec.1 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → 𝐻 ∈ (𝑆 × 𝑆))
30 oviec.13 . . . 4 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝐽 = 𝐻)
3129, 30, 12ovi3 5763 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨𝐴, 𝐵+𝐶, 𝐷⟩) = 𝐻)
3231eceq1d 6308 . 2 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → [(⟨𝐴, 𝐵+𝐶, 𝐷⟩)] = [𝐻] )
3328, 32eqtrd 2120 1 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ([⟨𝐴, 𝐵⟩] [⟨𝐶, 𝐷⟩] ) = [𝐻] )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1289  wex 1426  wcel 1438  Vcvv 2619  cop 3444   class class class wbr 3837  {copab 3890   × cxp 4426  (class class class)co 5634  {coprab 5635   Er wer 6269  [cec 6270   / cqs 6271
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-opab 3892  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fv 5010  df-ov 5637  df-oprab 5638  df-er 6272  df-ec 6274  df-qs 6278
This theorem is referenced by:  addpipqqs  6908  mulpipqqs  6911
  Copyright terms: Public domain W3C validator