ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oviec GIF version

Theorem oviec 6700
Description: Express an operation on equivalence classes of ordered pairs in terms of equivalence class of operations on ordered pairs. See iset.mm for additional comments describing the hypotheses. (Unnecessary distinct variable restrictions were removed by David Abernethy, 4-Jun-2013.) (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 4-Jun-2013.)
Hypotheses
Ref Expression
oviec.1 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → 𝐻 ∈ (𝑆 × 𝑆))
oviec.2 (((𝑎𝑆𝑏𝑆) ∧ (𝑔𝑆𝑆)) → 𝐾 ∈ (𝑆 × 𝑆))
oviec.3 (((𝑐𝑆𝑑𝑆) ∧ (𝑡𝑆𝑠𝑆)) → 𝐿 ∈ (𝑆 × 𝑆))
oviec.4 ∈ V
oviec.5 Er (𝑆 × 𝑆)
oviec.7 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ 𝜑))}
oviec.8 (((𝑧 = 𝑎𝑤 = 𝑏) ∧ (𝑣 = 𝑐𝑢 = 𝑑)) → (𝜑𝜓))
oviec.9 (((𝑧 = 𝑔𝑤 = ) ∧ (𝑣 = 𝑡𝑢 = 𝑠)) → (𝜑𝜒))
oviec.10 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝐽))}
oviec.11 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → 𝐽 = 𝐾)
oviec.12 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → 𝐽 = 𝐿)
oviec.13 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝐽 = 𝐻)
oviec.14 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑄𝑦𝑄) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] 𝑦 = [⟨𝑐, 𝑑⟩] ) ∧ 𝑧 = [(⟨𝑎, 𝑏+𝑐, 𝑑⟩)] ))}
oviec.15 𝑄 = ((𝑆 × 𝑆) / )
oviec.16 ((((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆)) ∧ ((𝑔𝑆𝑆) ∧ (𝑡𝑆𝑠𝑆))) → ((𝜓𝜒) → 𝐾 𝐿))
Assertion
Ref Expression
oviec (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ([⟨𝐴, 𝐵⟩] [⟨𝐶, 𝐷⟩] ) = [𝐻] )
Distinct variable groups:   𝑎,𝑏,𝑐,𝑑,𝑓,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐶   𝐷,𝑎,𝑏,𝑐,𝑑,𝑓,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑥,𝐽,𝑦,𝑧   𝑔,𝑎,,𝐴,𝑏,𝑐,𝑑,𝑓,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝜒,𝑢,𝑣,𝑤,𝑧   𝑓,𝐻,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏,𝑐,𝑑,𝑓,𝑔,,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑓,𝐾,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝜓,𝑢,𝑣,𝑤,𝑧   𝑓,𝐿,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦   𝑠,𝑎,𝑡,𝑆,𝑏,𝑐,𝑑,𝑓,𝑔,,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   + ,𝑎,𝑏,𝑐,𝑑,𝑔,,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑎,𝑏,𝑐,𝑑,𝑔,,𝑠,𝑡,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,𝑡,𝑓,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)   𝜓(𝑥,𝑦,𝑡,𝑓,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)   𝜒(𝑥,𝑦,𝑡,𝑓,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)   𝐴(𝑡,𝑠)   𝐵(𝑡,𝑠)   𝐶(𝑡,𝑔,,𝑠)   𝐷(𝑡,𝑔,,𝑠)   + (𝑤,𝑣,𝑢,𝑓)   (𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡,𝑓,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)   𝑄(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡,𝑓,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)   (𝑤,𝑣,𝑢,𝑓)   𝐻(𝑡,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)   𝐽(𝑤,𝑣,𝑢,𝑡,𝑓,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)   𝐾(𝑡,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)   𝐿(𝑡,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem oviec
StepHypRef Expression
1 oviec.4 . . 3 ∈ V
2 oviec.5 . . 3 Er (𝑆 × 𝑆)
3 oviec.16 . . . 4 ((((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆)) ∧ ((𝑔𝑆𝑆) ∧ (𝑡𝑆𝑠𝑆))) → ((𝜓𝜒) → 𝐾 𝐿))
4 oviec.8 . . . . . 6 (((𝑧 = 𝑎𝑤 = 𝑏) ∧ (𝑣 = 𝑐𝑢 = 𝑑)) → (𝜑𝜓))
5 oviec.7 . . . . . 6 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ 𝜑))}
64, 5opbrop 4742 . . . . 5 (((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆)) → (⟨𝑎, 𝑏𝑐, 𝑑⟩ ↔ 𝜓))
7 oviec.9 . . . . . 6 (((𝑧 = 𝑔𝑤 = ) ∧ (𝑣 = 𝑡𝑢 = 𝑠)) → (𝜑𝜒))
87, 5opbrop 4742 . . . . 5 (((𝑔𝑆𝑆) ∧ (𝑡𝑆𝑠𝑆)) → (⟨𝑔, 𝑡, 𝑠⟩ ↔ 𝜒))
96, 8bi2anan9 606 . . . 4 ((((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆)) ∧ ((𝑔𝑆𝑆) ∧ (𝑡𝑆𝑠𝑆))) → ((⟨𝑎, 𝑏𝑐, 𝑑⟩ ∧ ⟨𝑔, 𝑡, 𝑠⟩) ↔ (𝜓𝜒)))
10 oviec.2 . . . . . . 7 (((𝑎𝑆𝑏𝑆) ∧ (𝑔𝑆𝑆)) → 𝐾 ∈ (𝑆 × 𝑆))
11 oviec.11 . . . . . . 7 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → 𝐽 = 𝐾)
12 oviec.10 . . . . . . 7 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝐽))}
1310, 11, 12ovi3 6060 . . . . . 6 (((𝑎𝑆𝑏𝑆) ∧ (𝑔𝑆𝑆)) → (⟨𝑎, 𝑏+𝑔, ⟩) = 𝐾)
14 oviec.3 . . . . . . 7 (((𝑐𝑆𝑑𝑆) ∧ (𝑡𝑆𝑠𝑆)) → 𝐿 ∈ (𝑆 × 𝑆))
15 oviec.12 . . . . . . 7 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → 𝐽 = 𝐿)
1614, 15, 12ovi3 6060 . . . . . 6 (((𝑐𝑆𝑑𝑆) ∧ (𝑡𝑆𝑠𝑆)) → (⟨𝑐, 𝑑+𝑡, 𝑠⟩) = 𝐿)
1713, 16breqan12d 4049 . . . . 5 ((((𝑎𝑆𝑏𝑆) ∧ (𝑔𝑆𝑆)) ∧ ((𝑐𝑆𝑑𝑆) ∧ (𝑡𝑆𝑠𝑆))) → ((⟨𝑎, 𝑏+𝑔, ⟩) (⟨𝑐, 𝑑+𝑡, 𝑠⟩) ↔ 𝐾 𝐿))
1817an4s 588 . . . 4 ((((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆)) ∧ ((𝑔𝑆𝑆) ∧ (𝑡𝑆𝑠𝑆))) → ((⟨𝑎, 𝑏+𝑔, ⟩) (⟨𝑐, 𝑑+𝑡, 𝑠⟩) ↔ 𝐾 𝐿))
193, 9, 183imtr4d 203 . . 3 ((((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆)) ∧ ((𝑔𝑆𝑆) ∧ (𝑡𝑆𝑠𝑆))) → ((⟨𝑎, 𝑏𝑐, 𝑑⟩ ∧ ⟨𝑔, 𝑡, 𝑠⟩) → (⟨𝑎, 𝑏+𝑔, ⟩) (⟨𝑐, 𝑑+𝑡, 𝑠⟩)))
20 oviec.14 . . . 4 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑄𝑦𝑄) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] 𝑦 = [⟨𝑐, 𝑑⟩] ) ∧ 𝑧 = [(⟨𝑎, 𝑏+𝑐, 𝑑⟩)] ))}
21 oviec.15 . . . . . . . 8 𝑄 = ((𝑆 × 𝑆) / )
2221eleq2i 2263 . . . . . . 7 (𝑥𝑄𝑥 ∈ ((𝑆 × 𝑆) / ))
2321eleq2i 2263 . . . . . . 7 (𝑦𝑄𝑦 ∈ ((𝑆 × 𝑆) / ))
2422, 23anbi12i 460 . . . . . 6 ((𝑥𝑄𝑦𝑄) ↔ (𝑥 ∈ ((𝑆 × 𝑆) / ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / )))
2524anbi1i 458 . . . . 5 (((𝑥𝑄𝑦𝑄) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] 𝑦 = [⟨𝑐, 𝑑⟩] ) ∧ 𝑧 = [(⟨𝑎, 𝑏+𝑐, 𝑑⟩)] )) ↔ ((𝑥 ∈ ((𝑆 × 𝑆) / ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / )) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] 𝑦 = [⟨𝑐, 𝑑⟩] ) ∧ 𝑧 = [(⟨𝑎, 𝑏+𝑐, 𝑑⟩)] )))
2625oprabbii 5977 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑄𝑦𝑄) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] 𝑦 = [⟨𝑐, 𝑑⟩] ) ∧ 𝑧 = [(⟨𝑎, 𝑏+𝑐, 𝑑⟩)] ))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((𝑆 × 𝑆) / ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / )) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] 𝑦 = [⟨𝑐, 𝑑⟩] ) ∧ 𝑧 = [(⟨𝑎, 𝑏+𝑐, 𝑑⟩)] ))}
2720, 26eqtri 2217 . . 3 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((𝑆 × 𝑆) / ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / )) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] 𝑦 = [⟨𝑐, 𝑑⟩] ) ∧ 𝑧 = [(⟨𝑎, 𝑏+𝑐, 𝑑⟩)] ))}
281, 2, 19, 27th3q 6699 . 2 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ([⟨𝐴, 𝐵⟩] [⟨𝐶, 𝐷⟩] ) = [(⟨𝐴, 𝐵+𝐶, 𝐷⟩)] )
29 oviec.1 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → 𝐻 ∈ (𝑆 × 𝑆))
30 oviec.13 . . . 4 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝐽 = 𝐻)
3129, 30, 12ovi3 6060 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨𝐴, 𝐵+𝐶, 𝐷⟩) = 𝐻)
3231eceq1d 6628 . 2 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → [(⟨𝐴, 𝐵+𝐶, 𝐷⟩)] = [𝐻] )
3328, 32eqtrd 2229 1 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ([⟨𝐴, 𝐵⟩] [⟨𝐶, 𝐷⟩] ) = [𝐻] )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1506  wcel 2167  Vcvv 2763  cop 3625   class class class wbr 4033  {copab 4093   × cxp 4661  (class class class)co 5922  {coprab 5923   Er wer 6589  [cec 6590   / cqs 6591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fv 5266  df-ov 5925  df-oprab 5926  df-er 6592  df-ec 6594  df-qs 6598
This theorem is referenced by:  addpipqqs  7437  mulpipqqs  7440
  Copyright terms: Public domain W3C validator