ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oviec GIF version

Theorem oviec 6543
Description: Express an operation on equivalence classes of ordered pairs in terms of equivalence class of operations on ordered pairs. See iset.mm for additional comments describing the hypotheses. (Unnecessary distinct variable restrictions were removed by David Abernethy, 4-Jun-2013.) (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 4-Jun-2013.)
Hypotheses
Ref Expression
oviec.1 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → 𝐻 ∈ (𝑆 × 𝑆))
oviec.2 (((𝑎𝑆𝑏𝑆) ∧ (𝑔𝑆𝑆)) → 𝐾 ∈ (𝑆 × 𝑆))
oviec.3 (((𝑐𝑆𝑑𝑆) ∧ (𝑡𝑆𝑠𝑆)) → 𝐿 ∈ (𝑆 × 𝑆))
oviec.4 ∈ V
oviec.5 Er (𝑆 × 𝑆)
oviec.7 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ 𝜑))}
oviec.8 (((𝑧 = 𝑎𝑤 = 𝑏) ∧ (𝑣 = 𝑐𝑢 = 𝑑)) → (𝜑𝜓))
oviec.9 (((𝑧 = 𝑔𝑤 = ) ∧ (𝑣 = 𝑡𝑢 = 𝑠)) → (𝜑𝜒))
oviec.10 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝐽))}
oviec.11 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → 𝐽 = 𝐾)
oviec.12 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → 𝐽 = 𝐿)
oviec.13 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝐽 = 𝐻)
oviec.14 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑄𝑦𝑄) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] 𝑦 = [⟨𝑐, 𝑑⟩] ) ∧ 𝑧 = [(⟨𝑎, 𝑏+𝑐, 𝑑⟩)] ))}
oviec.15 𝑄 = ((𝑆 × 𝑆) / )
oviec.16 ((((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆)) ∧ ((𝑔𝑆𝑆) ∧ (𝑡𝑆𝑠𝑆))) → ((𝜓𝜒) → 𝐾 𝐿))
Assertion
Ref Expression
oviec (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ([⟨𝐴, 𝐵⟩] [⟨𝐶, 𝐷⟩] ) = [𝐻] )
Distinct variable groups:   𝑎,𝑏,𝑐,𝑑,𝑓,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐶   𝐷,𝑎,𝑏,𝑐,𝑑,𝑓,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑥,𝐽,𝑦,𝑧   𝑔,𝑎,,𝐴,𝑏,𝑐,𝑑,𝑓,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝜒,𝑢,𝑣,𝑤,𝑧   𝑓,𝐻,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏,𝑐,𝑑,𝑓,𝑔,,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑓,𝐾,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝜓,𝑢,𝑣,𝑤,𝑧   𝑓,𝐿,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦   𝑠,𝑎,𝑡,𝑆,𝑏,𝑐,𝑑,𝑓,𝑔,,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   + ,𝑎,𝑏,𝑐,𝑑,𝑔,,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑎,𝑏,𝑐,𝑑,𝑔,,𝑠,𝑡,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,𝑡,𝑓,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)   𝜓(𝑥,𝑦,𝑡,𝑓,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)   𝜒(𝑥,𝑦,𝑡,𝑓,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)   𝐴(𝑡,𝑠)   𝐵(𝑡,𝑠)   𝐶(𝑡,𝑔,,𝑠)   𝐷(𝑡,𝑔,,𝑠)   + (𝑤,𝑣,𝑢,𝑓)   (𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡,𝑓,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)   𝑄(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡,𝑓,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)   (𝑤,𝑣,𝑢,𝑓)   𝐻(𝑡,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)   𝐽(𝑤,𝑣,𝑢,𝑡,𝑓,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)   𝐾(𝑡,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)   𝐿(𝑡,𝑔,,𝑠,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem oviec
StepHypRef Expression
1 oviec.4 . . 3 ∈ V
2 oviec.5 . . 3 Er (𝑆 × 𝑆)
3 oviec.16 . . . 4 ((((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆)) ∧ ((𝑔𝑆𝑆) ∧ (𝑡𝑆𝑠𝑆))) → ((𝜓𝜒) → 𝐾 𝐿))
4 oviec.8 . . . . . 6 (((𝑧 = 𝑎𝑤 = 𝑏) ∧ (𝑣 = 𝑐𝑢 = 𝑑)) → (𝜑𝜓))
5 oviec.7 . . . . . 6 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ 𝜑))}
64, 5opbrop 4626 . . . . 5 (((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆)) → (⟨𝑎, 𝑏𝑐, 𝑑⟩ ↔ 𝜓))
7 oviec.9 . . . . . 6 (((𝑧 = 𝑔𝑤 = ) ∧ (𝑣 = 𝑡𝑢 = 𝑠)) → (𝜑𝜒))
87, 5opbrop 4626 . . . . 5 (((𝑔𝑆𝑆) ∧ (𝑡𝑆𝑠𝑆)) → (⟨𝑔, 𝑡, 𝑠⟩ ↔ 𝜒))
96, 8bi2anan9 596 . . . 4 ((((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆)) ∧ ((𝑔𝑆𝑆) ∧ (𝑡𝑆𝑠𝑆))) → ((⟨𝑎, 𝑏𝑐, 𝑑⟩ ∧ ⟨𝑔, 𝑡, 𝑠⟩) ↔ (𝜓𝜒)))
10 oviec.2 . . . . . . 7 (((𝑎𝑆𝑏𝑆) ∧ (𝑔𝑆𝑆)) → 𝐾 ∈ (𝑆 × 𝑆))
11 oviec.11 . . . . . . 7 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → 𝐽 = 𝐾)
12 oviec.10 . . . . . . 7 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝐽))}
1310, 11, 12ovi3 5915 . . . . . 6 (((𝑎𝑆𝑏𝑆) ∧ (𝑔𝑆𝑆)) → (⟨𝑎, 𝑏+𝑔, ⟩) = 𝐾)
14 oviec.3 . . . . . . 7 (((𝑐𝑆𝑑𝑆) ∧ (𝑡𝑆𝑠𝑆)) → 𝐿 ∈ (𝑆 × 𝑆))
15 oviec.12 . . . . . . 7 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → 𝐽 = 𝐿)
1614, 15, 12ovi3 5915 . . . . . 6 (((𝑐𝑆𝑑𝑆) ∧ (𝑡𝑆𝑠𝑆)) → (⟨𝑐, 𝑑+𝑡, 𝑠⟩) = 𝐿)
1713, 16breqan12d 3953 . . . . 5 ((((𝑎𝑆𝑏𝑆) ∧ (𝑔𝑆𝑆)) ∧ ((𝑐𝑆𝑑𝑆) ∧ (𝑡𝑆𝑠𝑆))) → ((⟨𝑎, 𝑏+𝑔, ⟩) (⟨𝑐, 𝑑+𝑡, 𝑠⟩) ↔ 𝐾 𝐿))
1817an4s 578 . . . 4 ((((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆)) ∧ ((𝑔𝑆𝑆) ∧ (𝑡𝑆𝑠𝑆))) → ((⟨𝑎, 𝑏+𝑔, ⟩) (⟨𝑐, 𝑑+𝑡, 𝑠⟩) ↔ 𝐾 𝐿))
193, 9, 183imtr4d 202 . . 3 ((((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆)) ∧ ((𝑔𝑆𝑆) ∧ (𝑡𝑆𝑠𝑆))) → ((⟨𝑎, 𝑏𝑐, 𝑑⟩ ∧ ⟨𝑔, 𝑡, 𝑠⟩) → (⟨𝑎, 𝑏+𝑔, ⟩) (⟨𝑐, 𝑑+𝑡, 𝑠⟩)))
20 oviec.14 . . . 4 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑄𝑦𝑄) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] 𝑦 = [⟨𝑐, 𝑑⟩] ) ∧ 𝑧 = [(⟨𝑎, 𝑏+𝑐, 𝑑⟩)] ))}
21 oviec.15 . . . . . . . 8 𝑄 = ((𝑆 × 𝑆) / )
2221eleq2i 2207 . . . . . . 7 (𝑥𝑄𝑥 ∈ ((𝑆 × 𝑆) / ))
2321eleq2i 2207 . . . . . . 7 (𝑦𝑄𝑦 ∈ ((𝑆 × 𝑆) / ))
2422, 23anbi12i 456 . . . . . 6 ((𝑥𝑄𝑦𝑄) ↔ (𝑥 ∈ ((𝑆 × 𝑆) / ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / )))
2524anbi1i 454 . . . . 5 (((𝑥𝑄𝑦𝑄) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] 𝑦 = [⟨𝑐, 𝑑⟩] ) ∧ 𝑧 = [(⟨𝑎, 𝑏+𝑐, 𝑑⟩)] )) ↔ ((𝑥 ∈ ((𝑆 × 𝑆) / ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / )) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] 𝑦 = [⟨𝑐, 𝑑⟩] ) ∧ 𝑧 = [(⟨𝑎, 𝑏+𝑐, 𝑑⟩)] )))
2625oprabbii 5834 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑄𝑦𝑄) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] 𝑦 = [⟨𝑐, 𝑑⟩] ) ∧ 𝑧 = [(⟨𝑎, 𝑏+𝑐, 𝑑⟩)] ))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((𝑆 × 𝑆) / ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / )) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] 𝑦 = [⟨𝑐, 𝑑⟩] ) ∧ 𝑧 = [(⟨𝑎, 𝑏+𝑐, 𝑑⟩)] ))}
2720, 26eqtri 2161 . . 3 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((𝑆 × 𝑆) / ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / )) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] 𝑦 = [⟨𝑐, 𝑑⟩] ) ∧ 𝑧 = [(⟨𝑎, 𝑏+𝑐, 𝑑⟩)] ))}
281, 2, 19, 27th3q 6542 . 2 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ([⟨𝐴, 𝐵⟩] [⟨𝐶, 𝐷⟩] ) = [(⟨𝐴, 𝐵+𝐶, 𝐷⟩)] )
29 oviec.1 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → 𝐻 ∈ (𝑆 × 𝑆))
30 oviec.13 . . . 4 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝐽 = 𝐻)
3129, 30, 12ovi3 5915 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨𝐴, 𝐵+𝐶, 𝐷⟩) = 𝐻)
3231eceq1d 6473 . 2 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → [(⟨𝐴, 𝐵+𝐶, 𝐷⟩)] = [𝐻] )
3328, 32eqtrd 2173 1 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ([⟨𝐴, 𝐵⟩] [⟨𝐶, 𝐷⟩] ) = [𝐻] )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wex 1469  wcel 1481  Vcvv 2689  cop 3535   class class class wbr 3937  {copab 3996   × cxp 4545  (class class class)co 5782  {coprab 5783   Er wer 6434  [cec 6435   / cqs 6436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fv 5139  df-ov 5785  df-oprab 5786  df-er 6437  df-ec 6439  df-qs 6443
This theorem is referenced by:  addpipqqs  7202  mulpipqqs  7205
  Copyright terms: Public domain W3C validator